Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Morello is active.

Publication


Featured researches published by C. Morello.


Astroparticle Physics | 1999

The EAS size spectrum and the cosmic ray energy spectrum in the region 1015–1016 eV

Massimo Aglietta; B. Alessandro; P. Antonioli; F. Arneodo; L. Bergamasco; M. Bertaina; C. Castagnoli; A. Castellina; A. Chiavassa; G. Cini Castagnoli; B. D'Ettorre Piazzoli; G. Di Sciascio; W. Fulgione; P. Galeotti; P. L. Ghia; M. Iacovacci; G. Mannocchi; C. Morello; G. Navarra; O. Saavedra; G.C. Trinchero; P. Vallania; S. Vernetto; C. Vigorito

Abstract The cosmic ray energy spectrum in the range E 0 = 10 15 –10 16 eV (including the region of the steepening, “knee” ) is studied by means of the EAS-TOP array (Campo Imperatore, Gran Sasso Laboratories, atmospheric depth 820 g cm −2 ). Measurements of the electromagnetic size ( N e = total number of charged particles at the observation level) are performed as a function of zenith angle with statistical accuracies of a few percent. The change of slope of the spectrum is observed in each bin of zenith angle at size values decreasing with increasing atmospheric depth. Its attenuation is compatible with the one of shower particles ( Λ e = 219 ± 3 g cm −2 ). This observation provides a consistency check, supporting a normal behaviour of showers at the break, that make plausible astrophysical interpretations based on an effect on primaries occurring at a given primary energy. The break has a “sharp” shape (i.e., within experimental errors is compatible with two intersecting power laws) that represents a constraint with which any interpretation has to match. The change of slope of the power law index reproducing the size spectrum is Δγ = 0.40 ± 0.09. The derived all particle energy spectrum is in good agreement with the extrapolation of the direct measurements at low energies and with other EAS data at and above the knee. Power laws fits to the energy spectrum below and above the knee give (in units of m −2 s −1 sr −1 TeV −1 ) S ( E 0 ) = (3.48 ± 0.06) × 10 −10 ( E 0 /2300) −2.76±0.03 for 900 TeV E 0 S ( E 0 ) = (3.77 ± 0.08) × 10 −11 ( E 0 /5000) −3.19±0.06 for 5000 TeV E 0 4 TeV. The systematic uncertainties connected to the interaction model and the primary composition are discussed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1993

UHE cosmic ray event reconstruction by the electromagnetic detector of EAS-TOP

Massimo Aglietta; B. Alessandro; P. Antonioli; F. Arneodo; L. Bergamasco; A. Campos Fauth; C. Castagnoli; A. Castellina; C. Cattadori; A. Chiavassa; G. Cini; B. D'Ettorre Piazzoli; G. Di Sciascio; W. Fulgione; P. Galeotti; P. L. Ghia; M. Iacovacci; G. Mannocchi; C. Morello; G. Navarra; L. Riccati; O. Saavedra; G.C. Trinchero; P. Vallania; S. Vernetto

Abstract UHE cosmic rays are studied by means of the detectors of the different components of secondaries produced by their interactions in the atmosphere (EAS). We describe and discuss the reconstruction techniques and accuracies of the e.m. detector of EAS-TOP. They allow, besides independent high resolution measurements of UHE γ-ray astronomy, good correlation possibilities with the detectors of the different EAS components.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1989

The EAS-TOP array at E0 = 1014 − 10 16eV: Stability and resolutions

Massimo Aglietta; G. Badino; L. Bergamasco; C. Castagnoli; A. Castellina; G. Cini; M. Dardo; B. D'Ettorre-Piazzoli; W. Fulgione; P. Galeotti; P. L. Ghia; G. Mannocchi; C. Morello; G. Navarra; L. Periale; P. Picchi; O. Saavedra; G.C. Trinchero; P. Vallania; S. Vernetto

Abstract The characteristics of the EAS-TOP extensive air shower array as a detector of very high energy cosmic rays ( E 0 ≥ 10 14 eV) for astrophysical studies are discussed. The array is located on top of the underground Gran Sasso Laboratory in central Italy; a subarray (11 modules of the em detector) has been operating since the end of 1987. From such data the stability of the detector, the timing resolution, the accuracies in the determination of the arrival directions ( δθ = 1.2° at E 0 ∼ 200 TeV in the present configuration) and in the reconstruction of the lateral electron distribution and of the shower size are derived.


Astroparticle Physics | 2006

Progress in air shower radio measurements: Detection of distant events

W.D. Apel; T. Asch; A.F. Badea; L. Bähren; K. Bekk; A. Bercuci; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; S. Buitink; M. Brüggemann; P. Buchholz; H. R. Butcher; A. Chiavassa; F. Cossavella; K. Daumiller; F. Di Pierro; P. Doll; R. Engel; H. Falcke; H. Gemmeke; P. L. Ghia; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer

Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by EAS observed with KASCADE-Grande have been analysed. We report about the analysis of correlations of radio signals measured by LOPES-10 with extensive air shower events reconstructed by KASCADE-Grande, including shower cores at large distances. The efficiency of detecting radio signals induced by air showers up to distances of 700m from the shower axis has been investigated. The results are discussed with special emphasis on the effects of the reconstruction accuracy for shower core and arrival direction on the coherence of the measured radio signal. In addition, the correlations of the radio pulse amplitude with the primary cosmic ray energy and with the lateral distance from the shower core are studied.


Astronomy and Astrophysics | 2007

Amplified radio emission from cosmic ray air showers in thunderstorms

S. Buitink; W.D. Apel; T. Asch; F. Badea; L. Bähren; K. Bekk; A. Bercuci; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; M. Brüggemann; P. Buchholz; H. R. Butcher; A. Chiavassa; F. Cossavella; K. Daumiller; F. Di Pierro; P. Doll; R. Engel; H. Falcke; H. Gemmeke; P. L. Ghia; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer

Context. The detection of radio pulses from cosmic ray air showers is a potentially powerful new detection mechanism for studying spectrum and composition of ultra high energy cosmic rays that needs to be understood in greater detail. The radiation consists in large part of geosynchrotron radiation. The intensity of this radiation depends, among other factors, on the energy of the primary particle and the angle of the shower axis with respect to the geomagnetic field. Aims. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. In this paper we examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Methods. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. For both mechanisms analytical estimates are made of their effects on the radio pulse height. We selected l o p e s data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We tested whether the correlations with geomagnetic angle and primary energy vary with atmospheric conditions. Results. We find that during thunderstorms the radio emission can be strongly enhanced. The present data suggests that the observed amplification is caused by acceleration of the shower electrons and positrons. In the near future, extensions of l o p e s and the construction of l o f a r will help to identify the mechanism in more detail. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during non-thunderstorm conditions.


Astroparticle Physics | 2003

Measurement of the cosmic ray hadron spectrum up to 30-TeV at mountain altitude: The Primary proton spectrum

M. Aglietta; B. Alessandro; P. Antonioli; F. Arneodo; L. Bergamasco; M. Bertaina; C. Castagnoli; A. Castellina; A. Chiavassa; G. Cini Castagnoli; B. D’Ettorre Piazzoli; G. Di Sciascio; W. Fulgione; P. Galeotti; P. L. Ghia; M. Iacovacci; G. Mannocchi; C. Morello; G. Navarra; L. Riccati; O. Saavedra; G. C. Trinchero; S. Valchierotti; P. Vallania; S. Vernetto; C. Vigorito

The flux of cosmic ray hadrons at the atmospheric depth of 820 g/cm^2 has been measured by means of the EAS-TOP hadron calorimeter (Campo Imperatore, National Gran Sasso Laboratories, 2005 m a.s.l.). The hadron spectrum is well described by a single power law : S(E_h) = (2.25 +- 0.21 +- 0.34(sys)) 10^(-7)(E_h/1000)^(-2.79 +- 0.05) m^(-2) s^(-1) sr^(-1) GeV^(-1) over the energy range 30 GeV-30 TeV. The procedure and the accuracy of the measurement are discussed. The primary proton spectrum is derived from the data by using the CORSIKA/QGSJET code to compute the local hadron flux as a function of the primary proton spectrum and to calculate and subtract the heavy nuclei contribution (basing on direct measurements). Over a wide energy range E_0 = 0.5-50 TeV its best fit is given by a single power law : S(E_0) = (9.8 +- 1.1 +- 1.6(sys)) 10^(-5) (E_0/1000)^(-2.80 +- 0.06) m^(-2) s^(-1) sr^(-1) GeV^(-1). The validity of the CORSIKA/QGSJET code for such application has been checked using the EAS-TOP and KASCADE experimental data by reproducing the ratio of the measured hadron fluxes at the two experimental depths (820 and 1030 g/cm^2 respectively) at better than 10% in the considered energy range.


Journal of Cosmology and Astroparticle Physics | 2014

The wavefront of the radio signal emitted by cosmic ray air showers

W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert; D. Kang; O. Krömer

Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 eV and zenith angles smaller than 45o, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ?50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c 2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, Xmax, better than 30 g/c 2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.


Astronomy and Astrophysics | 2008

Frequency spectra of cosmic ray air shower radio emission measured with LOPES

A. Nigl; W.D. Apel; J.C. Arteaga; T. Asch; J. Auffenberg; F. Badea; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; M. Brüggemann; P. Buchholz; S. Buitink; H. R. Butcher; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; H. Gemmeke; P. L. Ghia; R. Glasstetter; C. Grupen

Aims. We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (10 17 eV). Methods. We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. The radio data are digitally beam-formed before the spectra are determined by sub-band filtering and fast Fourier transformation. Results. The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential Eν = K · exp (ν/MHz/β )a ndβ = −0.017 ± 0.004, or alternatively, with a power law � ν = K · ν α and a spectral index of α = −1 ± 0.2. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). For the analyzed sample of LOPES events, we do not find any significant dependence of the spectral slope on the electric field amplitude, the azimuth angle, the zenith angle, the curvature radius, nor on the average distance of the antennae from the shower core position. But one of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of α = −3.6. Conclusions. We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

On noise treatment in radio measurements of cosmic ray air showers

F.G. Schröder; W.D. Apel; J.C. Arteaga; T. Asch; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; P. Buchholz; S. Buitink; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; P. Doll; R. Engel; H. Falcke; M. Finger; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege

Abstract Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.


Astroparticle Physics | 1996

A limit to the rate of ultra high energy γ-rays in the primary cosmic radiation

Massimo Aglietta; G. Di Sciascio; A. Campos Fauth; P. Vallania; P. Galeotti; P. Antonioli; B. D'Ettore Piazzoli; G. Cini Castagnoli; N. Mengotti Silva; W. Fulgione; H. Nogima; C. Castagnoli; A. Chiavassa; G. Mannocchi; B. Alessandro; G.C. Trinchero; C. Morello; R. Granella; A. Lima de Godoi; M. Iacovacci; G. Navarra; S. Vernetto; F. Arneodo; L. Bergamasco; M. Bertaina; O. Saavedra; C. Melagrana; A. Castellina; L. Riccati; C. Vigorito

Abstract An upper limit to the flux of Ultra High Energy (UHE) γ-rays in the primary cosmic radiation is obtained through the data of the electromagnetic and the muon detectors of the EAS-TOP Extensive Air Shower array (Campo Imperatore, National Gran Sasso Laboratories, atmospheric depth 810g cm−2). The search is performed by selecting Extensive Air Showers (EAS) with low muon content. For EAS electron sizes Ne > 6.3 · 105, no showers are observed with the core located inside a fiducial area and no muons recorded in the 140 m2 muon detector, during a live time of 8440 h. The 90% c.l. upper limit to the relative intensity of γ-ray with respect to cosmic ray (c.r.) primaries is I γ I c.r. −5 , at primary energy E0 ≥ 1015 eV: this limit is lower than reported in previous measurements.

Collaboration


Dive into the C. Morello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bertaina

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. L. Ghia

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Alessandro

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge