C. Murali Krishna
Manipal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Murali Krishna.
Photochemistry and Photobiology | 1991
C. Murali Krishna; Shobha Uppuluri; Peter Riesz; J. Samuel Zigler; D. Balasubramanian
We have studied the photochemical quantum yields of singlet oxygen production (using the RNO bleaching method) and superoxide production (using the EPR‐spin trapping method and the SOD‐inhibitable ferricytochrome c reduction spectral assay) of kynurenine (Ky), N‐formylkynurenine (NFK), 3‐hydroxykynurenine (3HK), kynurenic acid (KUA), and the flavins, riboflavin (RF) and flavin mononucleotide (FMN). Such a study of the photodynamic efficiencies is important since these compounds appear endogenously in the eye. The singlet oxygen quantum yields of the flavins and KUA are high, while Ky and 3HK generate no detectable amounts of singlet oxygen. The superoxide quantum yields of the sensitizers are low compared to their singlet oxygen, and Ky and 3HK produce no detectable amounts of superoxide. The production of the superoxide radical is enhanced in the presence of electron donor molecules such as EDTA and NADH. These results suggest that the production of oxyradicals in the lens may be modulated by the presence of endogenous electron donor molecules such as the coenzymes NADH and NADPH, which are present in significant amounts in some lenses. They also suggest that Ky and 3HK, which are known to be present in aged lenses, might play a protective rather than a deleterious role in the eye.
Radiation Research | 1986
I. Rosenthal; C. Murali Krishna; Peter Riesz; E. Ben-Hur
Phthalocyanines are a class of mammalian cell photosensitizers which may be useful in photodynamic therapy for cancer. Chloroaluminum phthalocyanine tetrasulfonate was incubated with Chinese hamster cells in culture and exposed to white light at different concentrations of oxygen. The ability of the cells to form colonies served as an end point for the photobiological effect of the dye. The efficiency of photoinactivation of the sensitized cells decreased with decreasing oxygen concentration. Very little photoinactivation was observed when the atmosphere equilibrated with the cells was oxygen-free nitrogen. At an oxygen partial pressure of 2.5 mm Hg, photoinactivation was reduced by 50% compared to ambient atmosphere. In an attempt to understand the nature of the interaction between excited dyes and oxygen, the ability of several phthalocyanines to photogenerate singlet oxygen was measured. Thus phthalocyanines containing paramagnetic ions (copper, iron, vanadyl) do not generate 1O2 in contradistinction to diamagnetic metals (zinc and aluminum). The latter are efficient photosensitizers, while the former have little if any photobiological activity. In spite of this correlation, singlet oxygen may not be the intermediate involved in cytotoxicity. The reasons are discussed.
Radiation Research | 2002
R. Jyothi Lakshmi; V. B. Kartha; C. Murali Krishna; J. G. R. Solomon; G. Ullas; P. Uma Devi
Abstract Jyothi Lakshmi, R., Kartha, V. B., Murali Krishna, C., Solomon, J. G. R., Ullas, G. and Uma Devi, P. Tissue Raman Spectroscopy for the Study of Radiation Damage: Brain Irradiation of Mice. Radiat. Res. 157, 175–182 (2002). Radiotherapy is routinely employed in the treatment of head and neck cancers. Acute cell death, radiation-activated chemical cascades, and the induction of genes coding for protective factors like cytokines are considered to be the major processes involved in radiation damage and repair. It should be possible to follow these processes by monitoring the biochemical interactions initiated by radiation. We have carried out Raman spectroscopy studies on tissue from mice subjected to brain irradiation to identify the biochemical changes occurring in tissue and brain as a result of radiation injury. These studies show that brain irradiation produces drastic spectral changes even in tissue far removed from the irradiation site. The changes are very similar to those produced by the stress of inoculation and restraint and the administration of an anesthetic drug. While the changes produced by stress or anesthetics last for only a short time (a few hours to 1 or 2 days), radiation-induced changes persist even after 1 week. The spectral changes can be interpreted in terms of the observation of new spectra that are dominated by bands due to proteins. The results thus support the hypothesis that various protective factors are released throughout the body when the central nervous system (CNS) is exposed to radiation.
Applied Spectroscopy | 2004
C. Murali Krishna; Ganesh D. Sockalingum; Jacob Kurien; Lakshmi Rao; L. Venteo; Michel Pluot; Michel Manfait; V. B. Kartha
Micro-Raman spectra of formalin-fixed oral squamous normal and carcinoma tissues, stored at room temperature for 2 months, have been recorded. Spectra were recorded both in the epithelial and subepithelial regions of the tissues. No noticeable spectral contamination due to formalin was observed. Very significant differences between spectra of normal epithelial and malignant epithelial samples were found. No such differences in spectra of subepithelial malignant and subepithelial normal samples could be observed. This study shows that spectra from the epithelial region changes drastically because of malignancy-induced biochemical changes in this region. Major differences between normal and malignant spectra seem to arise from the protein composition, conformational/structural changes, and possible increase in protein content in malignant epithelia. The differences between normal epithelial and subepithelial spectra, as expected, arise mainly from the collagen in subepithelial tissue. Principal component analysis of the combined sets of spectra—epithelial and subepithelial, normal and malignant— showed that very good discrimination can be achieved by Raman microspectroscopy. This study thus validates the suitability of formalin-fixed tissues for optical pathology in oral malignancy.
Journal of Biomedical Optics | 2012
S. P. Singh; Atul Deshmukh; Pankaj Chaturvedi; C. Murali Krishna
Abstract. Cancers of oral cavities are one of the most common malignancies in India and other south-Asian countries. Tobacco habits are the main etiological factors for oral cancer. Identification of premalignant lesions is required for improving survival rates related to oral cancer. Optical spectroscopy methods are projected as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex-vivo tissues. We intend to evaluate potentials of Raman spectroscopy in detecting premalignant conditions. Spectra were recorded from premalignant patches, contralateral normal (opposite to tumor site), and cancerous sites of subjects with oral cancers and also from age-matched healthy subjects with and without tobacco habits. A total of 861 spectra from 104 subjects were recorded using a fiber-optic probe-coupled HE-785 Raman spectrometer. Spectral differences in the 1200- to 1800-cm−1 region were subjected to unsupervised principal component analysis and supervised linear discriminant analysis followed by validation with leave-one-out and an independent test data set. Results suggest that premalignant conditions can be objectively discriminated with both normal and cancerous sites as well as from healthy controls with and without tobacco habits. Findings of the study further support efficacy of Raman spectroscopic approaches in oral-cancer applications.
Journal of Biomedical Optics | 2011
A. D. Ghanate; S. Kothiwale; S. P. Singh; Dominique Bertrand; C. Murali Krishna
Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.
Biopolymers | 2009
M. V. P. Chowdary; K. Kalyan Kumar; Stanley Mathew; Lakshmi Rao; C. Murali Krishna; Jacob Kurien
The aim of this study was to understand and correlate spectral features and biochemical changes in normal, fibroadenoma and infiltrating ductal carcinoma of breast tissues using Raman spectra that were part of the spectroscopic models developed and evaluated by us earlier. Spectra were subjected to curve fitting and intensities plots of resultant curve resolved bands were computed. This study has revealed that fat (1301 and 1440 cm−1), collagen (1246, 1271, and 1671 cm−1) and DNA (1340 and 1480 cm−1) bands have strong presence in normal, benign and malignant breast tissues, respectively. Intensity plots of various combinations of curved resolved bands were also explored to classify tissue types. Combinations of fat (1301 cm−1) and collagen (1246, 1271, and 1671 cm−1)/amide I; DNA (1340 cm−1) and fat (1301 cm−1); collagen (1271 cm−1) and DNA (1480 cm−1) are found to be good discriminating parameters. These results are in tune with findings of earlier studies carried out on western population as well as our molecular biological understanding of normal tissues and neoplastic processes. Thus the finding of this study further demonstrates the efficacy Raman spectroscopic approaches in diagnostic applications as well as in understanding molecular phenomenon in breast cancers.
Biopolymers | 2008
Mamidipudi Srinivasa Vidyasagar; K. Maheedhar; Bejadi Manjunath Vadhiraja; Donald J. Fernendes; V. B. Kartha; C. Murali Krishna
Radiotherapy is the choice of treatment for locally advanced stages of the cervical cancers, one of the leading female cancers. Because of intrinsic factors, tumors of same clinical stage and histological type often exhibit differential radioresponse. Radiotherapy regimen, from first fraction of treatment to clinical evaluation of response, spans more than 4 months. Clinical assessment by degree of tumor shrinkage is the only routinely practiced method to evaluate the tumor response. Hence, a need is created for development new methodologies that can predict the tumor response to radiotherapy at an early stage of the treatment which can lead to tailor‐made protocols. To explore the feasibility of prediction of tumor radioresponse, Raman spectra of cervix cancer tissues that were collected before (malignant) and 24 h after patient was treated with 2nd fraction of radiotherapy (RT) were recorded. Data were analyzed by Principal Components Analysis (PCA) and results were correlated with clinical evaluation of radioresponse. Mean Raman spectra of RT tissues corresponding to different levels of tumor response, complete, partial, and no response, showed minute but significant variations. The unsupervised PCA of malignant tissues failed to provide any classification whereas RT spectra gave clear classification between responding (complete and partial response) and nonresponding conditions as well as a tendency of separation among responding conditions. These results were corroborated by supervised classification, by means of discrimination parameters: Mahalanobis distance and spectral residuals. Thus, findings of the study suggest the feasibility of Raman spectroscopic prediction of tumor radioresponse in cervical cancers.
Expert Review of Molecular Diagnostics | 2008
C. Murali Krishna; Jacob Kurien; Stanley Mathew; Lakshmi Rao; K Maheedhar; K. Kalyan Kumar; Mvp Chowdary
Breast cancer is one of the leading female cancers. The major drawback of the gold standard of screening, mammography, is the high rate of false reports, aside from the risk from repeated exposure to harmful ionizing radiations. Histopathology, the gold standard of diagnosis, is time consuming and often prone to subjective interpretations. Molecular level diagnosis ‘omics’ is becoming increasingly popular; among these is metabolomics, diagnosis based on ‘metabolic fingerprinting’. In the present article we review a Raman spectroscopic approach to metabolic fingerprinting in breast cancer detection. This review opens with a brief background on anatomical and etiological aspects of breast cancers. We present an overview of conventional detection approaches in breast cancer screening and diagnosis methods, followed by a concise note on the basics of optical spectroscopy and its applications in the screening/diagnosis of breast malignancy. We present the recent developments in Raman spectroscopic diagnosis of breast cancers and also share our experience in Raman spectroscopic classification of normal, benign and malignant breast tissues. Perspectives and current status of Raman spectroscopic screening/diagnosis of breast cancers are also discussed.
PLOS ONE | 2013
Aditi Sahu; Krishna Dalal; Sarla Naglot; Parveen Aggarwal; C. Murali Krishna
The currently prescribed tests for asthma diagnosis require compulsory patient compliance, and are usually not sensitive to mild asthma. Development of an objective test using minimally invasive samples for diagnosing and monitoring of the response of asthma may help better management of the disease. Raman spectroscopy (RS) has previously shown potential in several biomedical applications, including pharmacology and forensics. In this study, we have explored the feasibility of detecting asthma and determining treatment response in asthma patients, through RS of serum. Serum samples from 44 asthma subjects of different grades (mild, moderate, treated severe and untreated severe) and from 15 reference subjects were subjected to Raman spectroscopic analysis and YKL-40 measurements. The force expiratory volume in 1 second (FEV1) values were used as gold standard and the serum YKL-40 levels were used as an additional parameter for diagnosing the different grades of asthma. For spectral acquisition, serum was placed on a calcium fluoride (CaF2) window and spectra were recorded using Raman microprobe. Mean and difference spectra comparisons indicated significant differences between asthma and reference spectra. Differences like changes in protein structure, increase in DNA specific bands and increased glycosaminoglycans-like features were more prominent with increase in asthma severity. Multivariate tools using Principal-component-analysis (PCA) and Principal-component based-linear-discriminant analysis (PC-LDA) followed by Leave-one-out-cross-validation (LOOCV), were employed for data analyses. PCA and PC-LDA results indicate separation of all asthma groups from the reference group, with minor overlap (19.4%) between reference and mild groups. No overlap was observed between the treated severe and untreated severe groups, indicating that patient response to treatment could be determined. Overall promising results were obtained, and a large scale validation study on random subjects is warranted before the routine clinical usage of this technique.