Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. N. Colacino is active.

Publication


Featured researches published by C. N. Colacino.


Monthly Notices of the Royal Astronomical Society | 2008

The stochastic gravitational‐wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays

Alberto Sesana; Alberto Vecchio; C. N. Colacino

Massive black hole binary systems, with masses in the range � 10 4 10 10 M⊙, are among the primary sources of gravitational waves in the frequency window � 10 −9 Hz 0.1Hz. Pulsar Timing Arrays (PTAs) and the Laser Interferometer Space Antenna (LISA) are the observational means by which we will be able to observe gravitational radiation from these systems. We carry out a systematic study of the generation of the stochastic gravitational-wave background from the cosmic population of massive black hole binaries. We consider a wide variety of assembly scenarios and we estimate the range of signal strength in the frequency band accessible to PTAs. We show that regardless of the specific model of massive black hole binaries formation and evolution, the characteristic amplitude hc of the gravitational wave stochastic background at 10 −8 Hz varies by less than a factor of 2. However, taking into account the uncertainties surrounding the actual key model parameters, the amplitude lies in the interval hc(f = 10 −8 Hz) � 5×10 −16 8×10 −15 . The most optimistic predictions place the signal level at a factor of � 3 below the current sensitivity of Pulsar Timing Arrays, but within the detection range of the complete Parkes PTA for a wide variety of models, and of the future Square-Kilometer-Array PTA for all the models considered here. We also show that at frequencies > 10 −8 Hz the frequency dependency of the generated background follows a power-law significantly steeper than hc / f −2/3 , that has been considered so far; the value of the spectral index depends on the actual assembly scenario and provides therefore an additional opportunity to extract astrophysical information about the cosmic population of massive black holes. Finally we show that LISA observations of individual resolvable massive black hole binaries are complementary and orthogonal to PTA observations of a stochastic background from the whole population in the Universe. In fact, the detection of gravitational radiation in both frequency windows will enable us to fully characterise the cosmic history of massive black holes.


Classical and Quantum Gravity | 2006

Status of the GEO600 detector

H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant

Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.


arXiv: General Relativity and Quantum Cosmology | 2010

LIGO-Virgo searches for gravitational waves from coalescing binaries: A status update

A. S. Sengupta; B. Abbott; B. Allen; R. Amin; F. Matichard; M. A. Arain; D. Kasprzyk; P. Aufmuth; S. Babak; P. Baker; P. Barriga; I. A. Bilenko; Giuseppe Castaldi; P. Charlton; C. T. Y. Chung; C. N. Colacino; R. Conte; S. Dhurandhar; D. J. Hosken; Tadahiro Sato; A. Sergeev; Malcolm B. Gray; Ping Koy Lam; David McClelland; Karen Mackenzie; C. M. Mow-Lowry; A. Mullavey; D. S. Rabeling; M. Satterthwaite; S. M. Scott

Coalescing compact binaries of neutron stars and/or black holes are considered as one of the most promising sources for Earth based gravitational wave detectors. The LIGO-Virgo joint collaborations Compact Binary Coalescence (CBC) group is searching for gravitational waves emitted by these astrophysical systems by matched filtering the data against theoretically modeled template waveforms. A variety of waveform template families are employed depending on the mass range probed by the search and the stage of the inspiral phase targeted: restricted post-Newtonian for systems having total mass less than 35M?, numerical relativity inspired complete inspiral-merger-ringdown waveforms for more massive systems up to 100M? and ringdown templates for modeling perturbed black holes up to 500M?. We give a status update on CBC groups current efforts and upcoming plans in detecting signatures of astrophysical gravitational waves.


Classical and Quantum Gravity | 2007

Prospects for stochastic background searches using Virgo and LSC interferometers

G. Cella; C. N. Colacino; Elena Cuoco; Angela Di Virgilio; T. Regimbau; E. L. Robinson; James Whelan

We consider the question of cross-correlation measurements using Virgo and the LSC Interferometers (LIGO Livingston, LIGO Hanford and GEO600) to search for a stochastic gravitational-wave background. We find that inclusion of Virgo into the network will substantially improve the sensitivity to correlations above 200 Hz if all detectors are operating at their design sensitivity. This is illustrated using a simulated isotropic stochastic background signal, generated with an astrophysically-motivated spectral shape, injected into 24 h of simulated noise for the LIGO and Virgo interferometers.


Gravitational wave and particle astrophysics detectors | 2004

The Status of GEO600

K. A. Strain; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


arXiv: General Relativity and Quantum Cosmology | 2010

Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data

L. Sancho De La Jordana; B. Abbott; B. Allen; R. Amin; F. Matichard; M. A. Arain; D. Kasprzyk; P. Aufmuth; S. Babak; P. Baker; P. Barriga; I. A. Bilenko; Giuseppe Castaldi; P. Charlton; C. T. Y. Chung; C. N. Colacino; R. Conte; S. Dhurandhar; D. J. Hosken; Tadahiro Sato; A. Sergeev; Malcolm B. Gray; Ping Koy Lam; David McClelland; Karen Mackenzie; C. M. Mow-Lowry; A. Mullavey; D. S. Rabeling; M. Satterthwaite; S. M. Scott

We describe a new pipeline used to analyze the data from the fifth science run (S5) of the LIGO detectors to search for continuous gravitational waves from isolated spinning neutron stars. The method employed is based on the Hough transform, which is a semi-coherent, computationally efficient, and robust pattern recognition technique. The Hough transform is used to find signals in the time-frequency plane of the data whose frequency evolution fits the pattern produced by the Doppler shift imposed on the signal by the Earths motion and the pulsars spin-down during the observation period. The main differences with respect to previous Hough all-sky searches are described. These differences include the use of a two-step hierarchical Hough search, analysis of coincidences among the candidates produced in the first and second year of S5, and veto strategies based on a χ2 test.


Proceedings of SPIE - The International Society for Optical Engineering | 2004

The status of GEO 600

K. A. Strain; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; S. J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


Astronomical Telescopes and Instrumentation | 2003

Status of the GEO600 gravitational wave detector

B. Willke; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Freise; S. Gossler; A. Grant; H. Grote; J. Harms; Gerhard Heinzel; S. Herden; A. Hepstonstall; M. Heurs; M. Hewitson; J. Hough

The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995. During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run.


Classical and Quantum Gravity | 2006

The GEO-HF project

B. Willke; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant; H. Grote

Collaboration


Dive into the C. N. Colacino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Allen

Albert Einstein Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Freise

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

A. Grant

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

B. Barr

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge