Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Pevida is active.

Publication


Featured researches published by C. Pevida.


Bioresource Technology | 2010

Thermal behaviour and kinetics of coal/biomass blends during co-combustion.

M.V. Gil; D. Casal; C. Pevida; J.J. Pis; F. Rubiera

The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5-80 wt.% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200 and 360 degrees C the volatiles are released and burned, and at 360-490 degrees C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315-615 degrees C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats-Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion.


Bioresource Technology | 2010

Mechanical durability and combustion characteristics of pellets from biomass blends.

M.V. Gil; P. Oulego; M.D. Casal; C. Pevida; J.J. Pis; F. Rubiera

Biofuel pellets were prepared from biomass (pine, chestnut and eucalyptus sawdust, cellulose residue, coffee husks and grape waste) and from blends of biomass with two coals (bituminous and semianthracite). Their mechanical properties and combustion behaviour were studied by means of an abrasion index and thermogravimetric analysis (TGA), respectively, in order to select the best raw materials available in the area of study for pellet production. Chestnut and pine sawdust pellets exhibited the highest durability, whereas grape waste and coffee husks pellets were the least durable. Blends of pine sawdust with 10-30% chestnut sawdust were the best for pellet production. Blends of cellulose residue and coals (<20%) with chestnut and pine sawdusts did not decrease pellet durability. The biomass/biomass blends presented combustion profiles similar to those of the individual raw materials. The addition of coal to the biomass in low amounts did not affect the thermal characteristics of the blends.


Bioresource Technology | 2010

Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production

J. Fermoso; B. Arias; M.V. Gil; M.G. Plaza; C. Pevida; J.J. Pis; F. Rubiera

Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass.


Journal of Environmental Engineering | 2009

Different Approaches for the Development of Low-Cost CO2 Adsorbents

M.G. Plaza; C. Pevida; B. Arias; M. D. Casal; C. F. Martín; J. Fermoso; F. Rubiera; J.J. Pis

Different carbon materials were tested as precursors for the production of C O2 adsorbents. The chemical modification of the surface of the prepared adsorbents was studied by means of three different approaches: impregnation with amines, electrophilic aromatic substitution, and heat treatment in the presence of ammonia. The samples were chemically characterized and the porous texture was evaluated from the N2 adsorption isotherms at −196°C . The C O2 adsorption capacities of the adsorbents at 25 and 100°C were evaluated in a thermogravimetric analyzer. In general, the incorporation of basic nitrogen functionalities enhanced the C O2 capture capacities of the modified carbons, but this increase depended on the textural properties of the support and the surface modification methodology. C O2 adsorption capacities of up to 111 mg C O2 ∕g at room temperature were attained. All the tested samples were completely regenerated when subjected to heat treatment at 100°C under inert atmosphere.


Journal of Analytical and Applied Pyrolysis | 2001

A comparison of different methods for predicting coal devolatilisation kinetics

A. Arenillas; F. Rubiera; C. Pevida; J.J. Pis

Knowledge of the coal devolatilisation rate is of great importance because it exerts a marked effect on the overall combustion behaviour. Different approaches can be used to obtain the kinetics of the complex devolatilisation process. The simplest are empirical and employ global kinetics, where the Arrhenius expression is used to correlate rates of mass loss with temperature. In this study a high volatile bituminous coal was devolatilised at four different heating rates in a thermogravimetric analyser (TG) linked to a mass spectrometer (MS). As a first approach, the Arrhenius kinetic parameters (k and A) were calculated from the experimental results, assuming a single step process. Another approach is the distributed-activation energy model, which is more complex due to the assumption that devolatilisation occurs through several first-order reactions, which occur simultaneously. Recent advances in the understanding of coal structure have led to more fundamental approaches for modelling devolatilisation behaviour, such as network models. These are based on a physico-chemical description of coal structure. In the present study the FG–DVC (Functional Group–Depolymerisation, Vaporisation and Crosslinking) computer code was used as the network model and the FG–DVC predicted evolution of volatile compounds was compared with the experimental results. In addition, the predicted rate of mass loss from the FG–DVC model was used to obtain a third devolatilisation kinetic approach. The three methods were compared and discussed, with the experimental results as a reference.


Fuel Processing Technology | 2002

Coal structure and reactivity changes induced by chemical demineralisation

F. Rubiera; A. Arenillas; C. Pevida; Ramón Álvarez García; J.J. Pis; Karen M. Steel; John W. Patrick

The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H2SiF6). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H2SiF6 demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO2 emissions.


Bioresource Technology | 2015

Grindability and combustion behavior of coal and torrefied biomass blends.

M.V. Gil; Ramón Álvarez García; C. Pevida; F. Rubiera

Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased.


Langmuir | 2013

Predicting Mixed-Gas Adsorption Equilibria on Activated Carbon for Precombustion CO2 Capture

Susana Garcia; J.J. Pis; F. Rubiera; C. Pevida

We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.


Journal of Thermal Analysis and Calorimetry | 2012

A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis

M.V. Gil; Juan Riaza; L. Álvarez; C. Pevida; J.J. Pis; F. Rubiera

The thermal characteristics of pulverized coal have been studied under oxy-fuel combustion conditions using non-isothermal thermogravimetric analysis (TG). The atmospheres used were 21%O2/79%N2, 21%O2/79%CO2, 30%O2/70%O2, and 35%O2/65%CO2. Coal blends of coal with 10 and 20% of biomass were also studied under these atmospheres. The addition of 10 and 20% of steam was evaluated for the oxy-fuel combustion atmospheres with 21 and 30% of O2 in order to study the effect of the wet recirculation of flue gas. The results obtained were similar for all the different rank coals and indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused a slight decrease in the rate of mass loss and delayed the burning process of the coal, biomass and coal/biomass blend samples. When the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the rate of mass loss increased, the burning process occurred at lower temperatures and it was shorter in duration. An increase in the rate of mass loss and a reduction in burning time and temperature were observed after the addition of steam to the oxy-fuel combustion atmosphere. No relevant differences between the 10 and 20% steam concentrations were observed.


Journal of Thermal Analysis and Calorimetry | 2004

Relationship between structure and reactivity of carbonaceous materials

A. Arenillas; F. Rubiera; C. Pevida; Conchi O. Ania; J.J. Pis

Knowledge of the amount and distribution of active sites in carbons is of paramount importance for a better understanding of the kinetics involved in heterogeneous gas solid reactions. In this work a commercial active carbon, CM, was treated at several temperatures in order to obtain a series of samples with different textural and structural properties. The results showed that the loss of reactivity of the samples, determined by thermogravimetric analysis, is related not only to the lower surface area but also to the decrease in the amount of active sites due to a higher structural ordering.

Collaboration


Dive into the C. Pevida's collaboration.

Top Co-Authors

Avatar

F. Rubiera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.J. Pis

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M.G. Plaza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M.V. Gil

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Riaza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Susana Garcia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Arenillas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

B. Arias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Fermoso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

L. Álvarez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge