C. Putignano
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Putignano.
Tribology Letters | 2013
C. Putignano; Tom Reddyhoff; Giuseppe Carbone; Daniele Dini
We present a detailed experimental investigation on viscoelastic rolling contacts. The tests focus on contact area, penetration and viscoelastic dissipation measurements between a nitrile rubber ball rolling on a glass disc. Each of the measured parameters is shown to be dependent on the rolling speed and normal load and has, therefore, been used to assess the main differences between viscoelastic and linear elastic rolling contacts. Experimental outcomes are compared with numerical predictions of the theory proposed by Carbone and Putignano (J Mech Phys Solid, 2013). A good agreement is found between experiments and theoretical predictions, thus demonstrating the validity of the numerical approach. This has important implications for modelling the behaviour of real viscoelastic materials, whose response is characterised by a wide distribution of relaxation times. The presented methodologies and results can be applied directly or are of relevance to a number of engineering components, such as tires and seals.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 2014
N. Menga; C. Putignano; Giuseppe Carbone; G. Demelio
In this paper, the contact of a rigid sinusoid sliding on a viscoelastic half-space is studied. The solution of the problem is obtained by following the path drawn by Hunter for cylindrical contacts. Results show that depending on the remote applied load, a transition from full contact conditions to partial contact may occur depending on the sliding velocity. This effect, which is not observed in smooth single asperity contacts, is related to the viscoelastic stiffening of the material and to the periodicity of the contacts. Frictional properties as well as contact area, displacement and pressure distributions are discussed in detail.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology | 2014
C. Putignano; J. Le Rouzic; Tom Reddyhoff; Giuseppe Carbone; Daniele Dini
Viscoelastic contacts are present in countless industrial components including tires, dampers and rubber seals. The effective design of such components requires a full knowledge of viscoelastic contact mechanics in terms of stresses, strains and hysteric dissipation. To assess some of these issues, this paper describes a series of experiments on the contact area and penetration in a rolling contact between a nitrile rubber ball and a glass disk. The experimental results are compared with the theory proposed by Carbone and Putignano1 showing close agreement at low speeds. However, discrepancies arise at speeds above 100 mm/s because of the frictional heating. In order to evaluate this effect, the temperature of the sliding interface is measured for different rolling speeds using infrared microscopy. Thermal results showed that interfacial temperature remained constant at low rolling speeds before rising significantly when speeds above 100 mm/s were reached. These temperature effects are incorporated into the numerical simulations by means of an approximated approach, which corrects the viscoelastic modulus based on the mean measured temperature in the contact. The result of this approach is to extend the region of agreement between experimental and numerical outcomes to higher speeds.
Physical Review E | 2016
C. Putignano; Giuseppe Carbone; Daniele Dini
A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.
Beilstein Journal of Nanotechnology | 2014
C. Putignano; L. Afferrante; Luigi Mangialardi; Giuseppe Carbone
Summary In the present paper we propose a generalization of the model developed in Afferrante, L.; Carbone, G.; Demelio, G.; Pugno, N. Tribol. Lett. 2013, 52, 439–447 to take into account the effect of the pre-tension in the tape. A detailed analysis of the peeling process shows the existence of two possible detachment regimes: one being stable and the other being unstable, depending on the initial configuration of the tape. In the stability region, as the peeling process advances, the peeling angle reaches a limiting value, which only depends on the geometry, on the elastic modulus of the tape and on the surface energy of adhesion. Vice versa, in the unstable region, depending on the initial conditions of the system, the tape can evolve towards a state of complete detachment or fail before reaching a state of equilibrium with complete adhesion. We find that the presence of pre-tension in the tape does not modify the stability behavior of the system, but significantly affects the pull-off force which can be sustained by the tape before complete detachment. Moreover, above a critical value of the pre-tension, which depends on the surface energy of adhesion, the tape will tend to spontaneously detach from the substrate. In this case, an external force is necessary to avoid spontaneous detachment and make the tape adhering to the substrate.
ACS Applied Materials & Interfaces | 2017
C. Putignano; Daniele Dini
Classical lubrication theory is unable to explain a variety of phenomena and experimental observations involving soft viscoelastic materials, which are ubiquitous and increasingly used in e.g. engineering and biomedical applications. These include unexpected ruptures of the lubricating film and a friction-speed dependence, which cannot be elucidated by means of conventional models, based on time-independent stress-strain constitutive laws for the lubricated solids. A new modeling framework, corroborated through experimental measurements enabled via an interferometric technique, is proposed to address these issues: Solid/fluid interactions are captured thanks to a coupling strategy that makes it possible to study the effect that solid viscoelasticity has on fluid film lubrication. It is shown that a newly defined visco-elasto-hydrodynamic lubrication (VEHL) regime can be experienced depending on the degree of coupling between the fluid flow and the solid hysteretic response. Pressure distributions show a marked asymmetry with a peak at the flow inlet, and correspondingly, the film thickness reveals a pronounced shrinkage at the flow outlet; friction is heavily influenced by the viscoelastic hysteresis which is experienced in addition to the viscous losses. These features show significant differences with respect to the classical elasto-hydrodynamic lubrication (EHL) regime response that would be predicted when solid viscoelasticity is neglected. A simple yet powerful criterion to assess the importance of viscoelastic solid contributions to soft matter lubrication is finally proposed.
Physical Mesomechanics | 2014
C. Putignano; Giuseppe Carbone
In this paper, we review the main contributions developed by the authors to solve problems involving contact between bodies with a roughness covering several orders of magnitude. A periodic self-equilibrated formulation is introduced to avoid any border problem. Furthermore, when focusing on the steady-state rolling or sliding contact mechanics between viscoelastic materials, we develop a mathematical formulation, parametrically dependent on the rolling/sliding speed, which employs the same computational techniques introduced for elastic rough contacts. In particular, in both cases, we adopt an ad hoc discretization technique enabling us to reach the full convergence.
Tribology Letters | 2018
L. Afferrante; Francesco Bottiglione; C. Putignano; B. N. J. Persson; Giuseppe Carbone
In this work, we discuss important improvements of asperity models. Specifically, we assess the predictive capabilities of a recently developed multiasperity model, which differs from the original Greenwood and Williamson model by (i) including the coupling between the elastic fields generated by each contact spot, and (ii) taking into account the coalescence among the contact areas, occurring during the loading process. Interaction of the elastic field is captured by summing the contributions, which are analytically known, of the elastic displacements in a given point of the surface due to each Hertzian-like contact spot. The coalescence is instead considered by defining an equivalent contact spot in such a way to guarantee conservation of contact area during coalescence. To evaluate the accuracy of the model, a comparison with fully numerical ‘exact’ calculations and Persson’s contact mechanics theory of elastic rough surfaces is proposed. Results in terms of contact area versus load and separation versus load show that the three approaches give almost the same predictions, while traditional asperity models neglecting coalescence and elastic coupling between contact regions are unable to correctly capture the contact behavior. Finally, very good results are also obtained when dealing with the probability distribution of interfacial stresses and gaps.
Scientific Reports | 2017
C. Putignano; Giuseppe Carbone
Reciprocating motion between viscoelastic solids occurs in a number of systems and, in particular, in all the dampers which exploits, as a physical principle, the viscoelastic dissipation. So far, any attempt to predict the behavour of this field of dampers relies on approximate methodologies and, often, on a steady-state approach, with a consequent poor understanding of the phenomenon. Here, we develop a methodology capable of simulating the actual mechanics of the problem and, in particular, we shed light on how the presence of not fully relaxed viscoelastic regions, during the punch motion, determine the viscoelastic dissipation. The latter is shown to be dependent ultimately on two dimensionless parameters, i.e. the maximum speed in the cycle and the frequency. Finally, the importance of considering a rough interface is enlightened.
VII European Congress on Computational Methods in Applied Sciences and Engineering | 2016
C. Putignano; Giuseppe Carbone; Daniele Dini
We implement an original Boundary Element methodology to study the reciprocating contact mechanics between linear viscoelastic materials. Results are shown for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. We observe the presence of multi-peaked pressure and displacement distributions; the hysteric friction curve is finally shown for different values of the frequency.