Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. R. K. Reddy is active.

Publication


Featured researches published by C. R. K. Reddy.


Plant Physiology and Biochemistry | 2012

Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation.

Manoj Kumar; A. J. Bijo; Ravi S. Baghel; C. R. K. Reddy; Bhavanath Jha

The protective role of exogenously supplied selenium (Se) and polyamines (PAs) such as putrescine (Put) and spermine (Spm) in detoxifying the cadmium (Cd) induced toxicity was studied in the marine red alga Gracilaria dura in laboratory conditions. The Cd exposure (0.4 mM) impede the growth of alga while triggering the reactive oxygen species (ROS viz. O(2)(•-) and H(2)O(2)) generation, inhibition of antioxidant system, and enhancing the lipoxygenase (LOX) activity, malondialdehyde (MDA) level and demethylation of DNA. Additions of Se (50 μM) and/or Spm (1 mM) to the culture medium in contrast to Put, efficiently ameliorated the Cd toxicity by decreasing the accumulation of ROS and MDA contents, while restoring or enhancing the level of enzymatic and nonenzymatic antioxidants and their redox ratio, phycobiliproteins and phytochelatins, over the controls. The isoforms of antioxidant enzymes namely superoxide dismutase (Mn-SOD, ~150 kDa; Fe-SOD ~120 kDa), glutathione peroxidase (GSH-Px, ~120 and 140 kDa), glutathione reductase (GR, ~110 kDa) regulated differentially to Se and/or Spm supplementation. Furthermore, it has also resulted in enhanced levels of endogenous PAs (specially free and bound insoluble Put and Spm) and n-6 PUFAs (C20-3, n-6 and C20-4, n-6). This is for the first time wherein Se and Spm were found to regulate the stabilization of DNA methylation by reducing the events of cytosine demethylation in a mechanism to alleviate the Cd stress in marine alga. The present findings reveal that both Se and Spm play a crucial role in controlling the Cd induced oxidative stress in G. dura.


Bioresource Technology | 2013

Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile

Nitin Trivedi; Vishal Gupta; C. R. K. Reddy; Bhavanath Jha

The green seaweed Ulva which proliferates fast and occurs abundantly worldwide was used as a feedstock for production of ethanol following enzymatic hydrolysis. Among the different cellulases investigated for efficient saccharification, cellulase 22119 showed the highest conversion efficiency of biomass into reducing sugars than Viscozyme L, Cellulase 22086 and 22128. Pre-heat treatment of biomass in aqueous medium at 120°C for 1h followed by incubation in 2% (v/v) enzyme for 36 h at 45°C gave a maximum yield of sugar 206.82±14.96 mg/g. The fermentation of hydrolysate gave ethanol yield of 0.45 g/g reducing sugar accounting for 88.2% conversion efficiency. These values are substantially higher than those of reported so far for both agarophytes and carrageenophytes. It was also confirmed that enzyme can be used twice without compromising on the saccharification efficiency. The findings of this study reveal that Ulva can be a potential feedstock for bioethanol production.


Phytochemistry | 2013

Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives

Puja Kumari; A. J. Bijo; Vaibhav A. Mantri; C. R. K. Reddy; Bhavanath Jha

The lipid and fatty acid (FA) compositions for 100 marine macroalgae were determined and discussed from the context of chemotaxonomic and nutritional perspectives. In general, the lipid contents in macroalgae were low (2.3-20 mg/g fr. wt.) but with substantially high amounts of nutritionally important polyunsaturated fatty acids (PUFAs) such as LA, ALA, STA, AA, EPA and DHA, that ranged from 10% to 70% of TFAs. More than 90% of the species showed nutritionally beneficial n6/n3 ratio (0.1:1-3.6:1) (p≤0.001). A closer look at the FA data revealed characteristic chemotaxonomic features with C18 PUFAs (LA, ALA and STA) being higher in Chlorophyta, C20 PUFAs (AA and EPA) in Rhodophyta while Phaeophyta depicted evenly distribution of C18 and C20 PUFAs. The ability of macroalgae to produce long-chain PUFAs could be attributed to the coupling of chloroplastic FA desaturase enzyme system from a photosynthetic endosymbiont to the FA desaturase/elongase enzyme system of a non-photosynthetic eukaryotic protist host. Further, the principal component analysis segregated the three macroalgal groups with a marked distinction of different genera, families and orders, Hierarchical cluster analyses substantiated the phylogenetic relationships of all orders investigated except for those red algal taxa belonging to Gigartinales, Ceramiales, Halymeniales and Rhodymeniales for which increased sampling effort is required to infer a conclusion. Also, the groups deduced from FA compositions were congruent with the clades inferred from nuclear and plastid genome sequences. This study further indicates that FA signatures could be employed as a valid chemotaxonomic tool to differentiate macroalgae at higher taxonomic levels such as family and orders.


Bioresource Technology | 2012

Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications

Mahendra K. Shukla; Ravindra Pal Singh; C. R. K. Reddy; Bhavanath Jha

This study describes the synthesis and characterization of silver nanoparticles and nanocomposite material using agar extracted from the red alga Gracilaria dura. Characterization of silver nanoparticles was carried out based on UV-Vis spectroscopy (421 nm), transmission electron microscopy, EDX, SAED and XRD analysis. The thermal stability of agar/silver nanocomposite film determined by TGA and DSC analysis showed distinct patterns when compared with their raw material (agar and AgNO(3)). The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape, 6 nm in size with uniform dispersal. The synthesized nanoparticles had the great bactericidal activity with reduction of 99.9% of bacteria over the control value. The time required for synthesis of silver nanoparticles was found to be temperature dependent and higher the temperature less the time for nanoparticles formation. DSC and XRD showed approximately the same crystalline index (CI(DSC) 0.73).


Journal of Applied Phycology | 2011

Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India

Manoj Kumar; Puja Kumari; Nitin Trivedi; Mahendra K. Shukla; Vishal Gupta; C. R. K. Reddy; Bhavanath Jha

Twenty-two tropical seaweeds from the Rhodophyta, Phaeophyta and Chlorophyta were examined for their possible use as nutritional supplements. All seaweeds contained balanced Na/K and C/N ratio and high amounts of macroelements (Na, K, Ca, and Mg) as compared to the terrestrial vegetables. Among the microelements, Fe was the highest followed by Zn, Mn, Cu and other trace elements. Fatty acid distribution showed high level of n-6 and n-3 polyunsaturated fatty acids (PUFAs), and their ratios were within the WHO prescribed limits. The higher ratios of PUFA/SFA (>0.4) are in agreement with the recommendations of nutritional guidelines. Most of the species, especially the Chlorophyta and Phaeophyta, had permissible intake values of unsaturation, atherogenic and thrombogenic indexes comparable to milk-based products. Principal component analysis demonstrated a correlation between total phenolic content, total antioxidant activity, DPPH, and O2•− radical scavenging activity, suggesting polyphenols as the chief contributor to the antioxidant activity in seaweeds. These results indicate that these seaweeds could be a potential source of natural antioxidants, minerals and high-quality PUFAs and may be efficiently used as ingredients in functional foods.


Analytical Biochemistry | 2011

Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae.

Puja Kumari; C. R. K. Reddy; Bhavanath Jha

A comparative evaluation of Bligh and Dyer, Folch, and Cequier-Sánchez methods for quantitative determination of total lipids (TLs) and fatty acids (FAs) was accomplished in selective green (Ulva fasciata), red (Gracilaria corticata), and brown algae (Sargassum tenerrimum) using a full factorial categorical design. Applications of sonication and buffer individually on lipid extraction solvent systems were also evaluated. The FA recoveries obtained from the aforementioned methods were compared with those of direct transesterification (DT) methods to identify the best extraction methods. The experimental design showed that macroalgal matrix, extraction method, and buffer were key determinants for TL and FA recoveries (P≤0.05), exhibiting significant interactions. But sonication gave erratic results with no interaction with any of the factors investigated. The buffered solvent system of Folch rendered the highest TL yield in U. fasciata and G. corticata while the buffered system of Bligh and Dyer gave the highest yield in S. tenerrimum. DT methods were more convenient and accurate for FA quantification and rendered 1.5-2 times higher yields when compared with the best conventional method, minimizing the use of chlorinated solvents, their cost of analysis, and disposal. The buffered solvent system was found to be the most appropriate for lipid research in macroalgae.


FEMS Microbiology Ecology | 2014

Seaweed–microbial interactions: key functions of seaweed-associated bacteria

Ravindra Pal Singh; C. R. K. Reddy

Seaweed-associated bacteria play a crucial role in morphogenesis and growth of seaweeds (macroalgae) in direct and/or indirect ways. Bacterial communities belonging to the phyla Proteobacteria and Firmicutes are generally the most abundant on seaweed surfaces. Associated bacterial communities produce plant growth-promoting substances, quorum sensing signalling molecules, bioactive compounds and other effective molecules that are responsible for normal morphology, development and growth of seaweeds. Also, bioactive molecules of associated bacteria determine the presence of other bacterial strains on seaweeds and protect the host from harmful entities present in the pelagic realm. The ecological functions of cross-domain signalling between seaweeds and bacteria have been reported as liberation of carpospores in the red seaweeds and settlement of zoospores in the green seaweeds. In the present review, the role of extracellular polymeric substances in growth and settlement of seaweeds spores is also highlighted. To elucidate the functional roles of associated bacteria and the molecular mechanisms underlying reported ecological phenomena in seaweeds requires a combined ecological, microbiological and biochemical approach.


Plant Physiology and Biochemistry | 2011

Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method

Vishal Gupta; Manoj Kumar; Harshad Brahmbhatt; C. R. K. Reddy; Abhiram Seth; Bhavanath Jha

A simple and rapid HPLC-based method was developed for simultaneous determination of major classes of plant growth regulators (PGRs) in Monostroma and different species of Ulva. The plant growth regulators determined included gibberellic acid (GA(3)), indole-3-acetic acid (IAA), abscisic acid (ABA), indole-3-butyric acid (IBA), salicylic acid and kinetin riboside (KR) and their respective elution time was 2.75, 3.3, 3.91, 4.95, 5.39 and 6.59 min. The parameters optimized for distinct separation of PGRs were mobile phase (60:40 methanol and 0.6% acetic acid in water), column temperature (35°C) and flow rate (1ml/min). This method presented an excellent linearity (0.2-100μg/ml) with limit of detection (LOD) as 0.2μg/ml for ABA, 0.5μg/ml for KR and salicylic acid, and 1μg/ml for IAA, IBA and GA(3). The precision and accuracy of the method was evaluated after inter and intra day analysis in triplicates. The effect of plant matrix was compensated after spiking and the resultant recoveries estimated were in the range of 80-120%. Each PGR thereby detected were further characterized by ESI-MS analysis. The method optimized in this study determined IBA along with IAA for the first time in the seaweed species investigated except Ulva linza where the former was not detected. In all the species studied, ABA level was detected to be the highest while kinetin riboside was the lowest. In comparison to earlier methods of PGR analysis, sample preparation and analysis time were substantially reduced while allowing determination of more classes of PGRs simultaneously.


Chemical Research in Toxicology | 2011

Toxic Effects of Imidazolium Ionic Liquids on the Green Seaweed Ulva lactuca: Oxidative Stress and DNA Damage

Manoj Kumar; Nitin Trivedi; C. R. K. Reddy; Bhavanath Jha

The green credentials of ionic liquids (ILs) are being increasingly questioned due to the growing evidence of their toxicity to aquatic ecosystems, although the mechanisms of toxicity are unknown. This study provides insights into the mechanism of toxicity and biological effects of 1-alkyl-3-methylimidazolium bromide [C(n)mim]Br (n = 4 to 16) on the marine macroalga Ulva lactuca. The cell viability of this alga during IL exposure was found to be negatively correlated to the chain length of the alkyl group. The IL ([C(12)mim]Br) exposure triggers the generation of reactive oxygen species (ROS viz. O(2)(•-), H(2)O(2), and OH(•)), damage of the membrane and DNA, and inhibition of antioxidant systems in the alga. The enhanced production of ROS and lipid peroxidation in the alga subjected to LC(50) concentration for 4 days was largely attributed to lipoxygenase (LOX) activity coupled with the induction of two LOX isoforms (~80 kDa and ~55 kDa). Pretreatment of the algal thallus with enzyme inhibitors such as diphenylene iodonium, sodium azide, cantharidin, and oxadiazoloquinoxalin-1-one, prior to [C(12)mim]Br exposure showed the regulation of ROS by the activation of membrane bound NADPH-oxidase and cytochrome oxidase. The IL exposure resulted in the accumulation of n-3 and n-6 fatty acids at 0.5 LC(50) concentration indicating the induction of desaturase enzymes. Furthermore, antioxidant enzyme activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were enhanced by 1.3-2.0-fold, while glutathione peroxidase (GSH-Px) diminished, together with a higher regeneration rate of reduced ascorbate and glutathione. The isoforms of antioxidant enzymes, namely, Mn-SOD (~85 kDa), APX (~125 and 45 kDa), and GR (~135 kDa) regulated differentially to IL exposure. The comet assay performed for the first time for seaweeds revealed the significant induction of DNA damage (>50-70% increase in % tail DNA over control) in alga exposed to ≥ LC(50) concentration.


Journal of Applied Phycology | 2008

Seaweed micropropagation techniques and their potentials: an overview

C. R. K. Reddy; Bhavanath Jha; Yuji Fujita; Masao Ohno

The seaweed industry worldwide uses 7.5–8.0 million tonnes of wet seaweeds annually with a majority of it derived from cultivated farms, as the demand for seaweed based-products exceeds the supply of seaweed raw material from natural stocks. The main advantage of cultivation is that it not only obviates overexploitation of natural populations but also facilitates the selection of germplasm with desired traits. To enhance the economic prospects of seaweed cultivation, varied practices, such as simple and cost effective cultivation methods, use of select germplasm as seed stock coupled with good farm management practices, etc., are adopted. Nevertheless, in vitro cell culture techniques have also been employed as they facilitate development and propagation of genotypes of commercial importance. There are more than 85 species of seaweeds for which tissue culture aspects have been reported. Although the initial aim of these techniques focuses mostly on genetic improvement and clonal propagation of seaweeds for mariculture, recently the scope of these techniques has been extended for use in bioprocess technology for production of high value chemicals of immense importance in the pharmaceutical and nutraceutical sectors. Recently, there has been a phenomenal interest in intensifying seaweed tissue and cell culture research to maximize the add-on value of seaweed resources. This paper deals with the status of seaweed micropropagation techniques and their applications in the context of the marine biotech industry. Further, it also provides an analysis of the problems to be resolved for removing the barriers that are impeding the true realization of potentials offered by these techniques for sustainable development and utilization of seaweed resources.

Collaboration


Dive into the C. R. K. Reddy's collaboration.

Top Co-Authors

Avatar

Bhavanath Jha

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar

Puja Kumari

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vishal Gupta

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar

Manoj Kumar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Nitin Trivedi

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi S. Baghel

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vaibhav A. Mantri

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

B. Jha

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Top Co-Authors

Avatar

A. J. Bijo

Central Salt and Marine Chemicals Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge