Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Richard Hutchinson is active.

Publication


Featured researches published by C. Richard Hutchinson.


Chemistry & Biology | 1998

Biosynthesis of the ansamycin antibiotic rifamycin : deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699

Paul R. August; Li Tang; Yeo Joon Yoon; Sandra Ning; Rolf Müller; Tin-Wein Yu; Matthew P. Taylor; Dietmar Hoffmann; Chun-Gyu Kim; Xiaohong Zhang; C. Richard Hutchinson; Heinz G. Floss

BACKGROUND The ansamycin class of antibiotics are produced by various Actinomycetes. Their carbon framework arises from the polyketide pathway via a polyketide synthase (PKS) that uses an unusual starter unit. Rifamycin (rif), produced by Amycolatopsis mediterranei, is the archetype ansamycin and it is medically important. Although its basic precursors (3-amino-5-hydroxy benzoic acid AHBA, and acetic and propionic acids) had been established, and several biosynthetic intermediates had been identified, very little was known about the origin of AHBA nor had the PKS and the various genes and enzymes that modify the initial intermediate been characterized. RESULTS A set of 34 genes clustered around the rifK gene encoding AHBA synthase were defined by sequencing all but 5 kilobases (kb) of a 95 kb contiguous region of DNA from A. mediterranei. The involvement of some of the genes in the biosynthesis of rifamycin B was examined. At least five genes were shown to be essential for the synthesis of AHBA, five genes were determined to encode the modular type I PKS that uses AHBA as the starter unit, and 20 or more genes appear to govern modification of the polyketide-derived framework, and rifamycin resistance and export. Putative regulatory genes were also identified. Disruption of the PKS genes at the end of rifA abolished rifamycin B production and resulted in the formation of P8/1-OG, a known shunt product of rifamycin biosynthesis, whereas disruption of the orf6 and orf9 genes, which may encode deoxysugar biosynthesis enzymes, had no apparent effect. CONCLUSIONS Rifamycin production in A. mediterranei is governed by a single gene cluster consisting of structural, resistance and export, and regulatory genes. The genes characterized here could be modified to produce novel forms of the rifamycins that may be effective against rifamycin-resistant microorganisms.


Current Opinion in Microbiology | 1998

Combinatorial biosynthesis for new drug discovery.

C. Richard Hutchinson

Combinatorial biosynthesis involves interchanging secondary metabolism genes between antibiotic-producing microorganisms to create unnatural gene combinations or hybrid genes if only part of a gene is exchanged. Novel metabolites can be made by both approaches, due to the effect of a new enzyme on a metabolic pathway or to the formation of proteins with new enzymatic properties. The method has been particularly successful with polyketide synthase (PKS) genes: derivatives of medically important macrolide antibiotics and unusual polycyclic aromatic compounds have been produced by novel combinations of the type I and type II PKS genes, respectively. Recent extensions of the approach to include deoxysugar biosynthesis genes have expanded the possibilities for making new microbial metabolites and discovering valuable drugs through the genetic engineering of bacteria.


Gene | 1998

Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei

Li Tang; Yeo Joon Yoon; Cha-Yong Choi; C. Richard Hutchinson

Five clustered polyketide synthase (PKS) genes, rifA-rifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69-79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The beta-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86-90%) and to other PKSs (78-85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51-60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246-248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the beta-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a beta-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B. 1998 Elsevier Science B.V.


Molecular Microbiology | 1996

Purification and characterization of the DNA‐binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius

Li Tang; A. Grimm; Ying‐Xin Zhang; C. Richard Hutchinson

The DnrI protein, essential for the biosynthesis of daunorubicin in Streptomyces peucetius, was purified almost to homogeneity from dnrI expression strains of Escherichia coli and S. peucetius through several steps of chromatography. The proteins purified from both organisms had identical chromatographic and electrophoretic behaviour. Purified His‐tagged or native DnrI was used to conduct DNA‐binding assays by gel mobility‐shift analysis, and the results showed no significant difference in the DNA‐binding activity of native or His‐tagged proteins. DnrI binds specifically to DNA segments containing the intergenic regions separating the putative dnrG–dpsABCD and dpsEF operons, and the dnrC gene and dnrDKPSQ operon. DNase I footprinting assays indicated that the DNA‐binding sites for DnrI extended from upstream of the −10 to −35 regions of the dnrG or dpsE promoters to include about 65 bp of the dnrG–dpsE intergenic region and about 80 bp of the dnrC–dnrD intergenic region. Both binding sites contain imperfect inverted repeat sequences of 6–10 bp with a 5′‐TCGAG‐3′ consensus sequence that was present in 4 out of 10 other promoter regions in the cluster of daunorubicin biosynthesis genes.


Molecular Microbiology | 2002

Mapping the DNA‐binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI

Paul J. Sheldon; Sara B. Busarow; C. Richard Hutchinson

Streptomyces antibiotic regulatory proteins (SARPs) constitute a novel family of transcriptional activators that control the expression of several diverse anti‐biotic biosynthetic gene clusters. The Streptomyces peucetius DnrI protein, one of only a handful of these proteins yet discovered, controls the biosynthesis of the polyketide antitumour antibiotics daunorubicin and doxorubicin. Recently, comparative analyses have revealed significant similarities among the predicted DNA‐binding domains of the SARPs and the C‐terminal DNA‐binding domain of the OmpR family of regulatory proteins. Using the crystal structure of the OmpR‐binding domain as a template, DnrI was mapped by truncation and site‐directed mutagenesis. Several highly conserved residues within the N‐terminus are crucial for DNA binding and protein function. Tandemly arranged heptameric imperfect repeat sequences are found within the −35 promoter regions of target genes. Substitutions for each nucleotide within the repeats of the dnrG–dpsABCD promoter were performed by site‐directed mutage‐nesis. The mutant promoter fragments were found to have modified binding characteristics in gel mobility shift assays. The spacing between the repeat target sequences is also critical for successful occupation by DnrI and, therefore, competent transcriptional activation of the dnrG–dpsABCD operon.


Chemistry & Biology | 1999

A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of ε-rhodomycinone to rhodomycin D

Carlos Olano; Natalia Lomovskaya; Leonid Fonstein; Jon T. Roll; C. Richard Hutchinson

Background: The biological activity of many microbial products requires the presence of one or more deoxysugar molecules attached to agylcone. This is especially prevalent among polyketides and is an important reason that the antitumor anthracycline antibiotics are avid DNA-binding drugs. The ability to make different deoxyaminosugars and attach them to the same or different aglycones in vivo would facilitate the synthesis of new anthracyclines and the quest for antitumor drugs. This is feasible using the numerous bacterial genes for deoxysugar biosynthesis that are now available. Results: Production of thymidine diphospho (TDP)-L-daunosamine (dnm), the aminodeoxysugar present in the anthracycline antitumor drugs daunorubicin (DNR) and doxorubicin (DXR), and its attachment to e-rhodomycinone to generate rhodomycin D has been achieved by bioconversion with a strain of Streptomyces lividans that bears two plasmids. One contained the Streptomyces peucetius dnmJVUZTQS genes plus dnmW (previously named dpsH and considered to be a polyketide cyclase gene), dnrH, which is not required for the formation of rhodomycin D, and dnrI, a regulatory gene required for expression of the dnm and drr genes. The other plasmid had genes encoding glucose-1-phosphate thymidylyltransferase and TDP-glucose4,6-dehydratase (dnmL and dnmM, respectively, or mtmDE, their homologs from Streptomyces agrillaceus) plus the drrAB DNR/DXR resistance genes. Conclusions: The high-yielding glycosylation of the aromatic polyketide e-rhodomycinone using plasmid-borne deoxysugar biosynthesis genes proves that the minimal information for L-daunosamine biosynthesis and attachment in the heterologous host is encoded by the dnmLMJVUTS genes. This is a general approach to making both known and new glycosides of anthracyclines, several of which have medically important antitumor activity.


Chemistry & Biology | 2001

Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans

Sven-Eric Wohlert; Natalia Lomovskaya; Kerry Kulowski; Leonid Fonstein; James Occi; Douglas J. MacNeil; C. Richard Hutchinson

BACKGROUND The avermectins, produced by Streptomyces avermitilis, are potent anthelminthic agents with a polyketide-derived macrolide skeleton linked to a disaccharide composed of two alpha-linked L-oleandrose units. Eight contiguous genes, avrBCDEFGHI (also called aveBI-BVIII), are located within the avermectin-producing gene cluster and have previously been mapped to the biosynthesis and attachment of thymidinediphospho-oleandrose to the avermectin aglycone. This gene cassette provides a convenient way to study the biosynthesis of 2,6-dideoxysugars, namely that of L-oleandrose, and to explore ways to alter the biosynthesis and structures of the avermectins by combinatorial biosynthesis. RESULTS A Streptomyces lividans strain harboring a single plasmid with the avrBCDEFGHI genes in which avrBEDC and avrIHGF were expressed under control of the actI and actIII promoters, respectively, correctly glycosylated exogenous avermectin A1a aglycone with identical oleandrose units to yield avermectin A1a. Modified versions of this minimal gene set produced novel mono- and disaccharide avermectins. The results provide further insight into the biosynthesis of L-oleandrose. CONCLUSIONS The plasmid-based reconstruction of the avr deoxysugar genes for expression in a heterologous system combined with biotransformation has led to new information about the mechanism of 2,6-deoxysugar biosynthesis. The structures of the di-demethyldeoxysugar avermectins accumulated indicate that in the oleandrose pathway the stereochemistry at C-3 is ultimately determined by the 3-O-methyltransferase and not by the 3-ketoreductase or a possible 3,5-epimerase. The AvrF protein is therefore a 5-epimerase and not a 3,5-epimerase. The ability of the AvrB (mono-)glycosyltransferase to accommodate different deoxysugar intermediates is evident from the structures of the novel avermectins produced.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Polyketide and non-ribosomal peptide synthases: Falling together by coming apart

C. Richard Hutchinson

Microorganisms have invented many devious ways to thwart their foes and survive in adverse environments. Non-motile microbes, especially ones that inhabit soil and marine environments, are noted for an ability to produce a wide range of chemicals (1). These are usually called “secondary metabolites,” because of their seeming dispensability for the organisms ontogeny. It is obvious from the complex structures of such metabolites that their production involves unusual biochemistry as well as complex genetics devoted to the property of self-defense, intercellular communication, and other aspects of microbial life.


Chemistry & Biology | 1997

Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides

Guido Meurer; Martin Gerlitz; Evelyn Wendt-Pienkowski; Leo C. Vining; Jürgen Rohr; C. Richard Hutchinson

BACKGROUND Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) and CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules. RESULTS We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products. CONCLUSIONS It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides.


Bioorganic & Medicinal Chemistry Letters | 2001

Conversion of cyclic nonaketides to lovastatin and compactin by a lovC deficient mutant of Aspergillus terreus.

Karine Auclair; Jonathan Kennedy; C. Richard Hutchinson; John C. Vederas

Investigation of the post-PKS biosynthetic steps to the cholesterol-lowering agent lovastatin (1) using an Aspergillus terreus strain with a disrupted lovC gene, which is essential for formation of 4a,5-dihydromonacolin L (3), shows that 7 and 3 are precursors to 1, and demonstrates that lovastatin diketide synthase (lovF protein) does not require lovC.

Collaboration


Dive into the C. Richard Hutchinson's collaboration.

Top Co-Authors

Avatar

Li Tang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Masami Nakane

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Evelyn Wendt-Pienkowski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sharee Otten

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz G. Floss

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonid Fonstein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mary M. Sherman

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge