Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Rick Lyons is active.

Publication


Featured researches published by C. Rick Lyons.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation

Eliseo F. Castillo; Alexander Dekonenko; John Arko-Mensah; Michael A. Mandell; Nicolas Dupont; Shanya Jiang; Monica Delgado-Vargas; Graham S. Timmins; Dhruva Bhattacharya; Hongliang Yang; Julie A. Hutt; C. Rick Lyons; Karen M. Dobos; Vojo Deretic

Autophagy is a cell biological pathway affecting immune responses. In vitro, autophagy acts as a cell-autonomous defense against Mycobacterium tuberculosis, but its role in vivo is unknown. Here we show that autophagy plays a dual role against tuberculosis: antibacterial and anti-inflammatory. M. tuberculosis infection of Atg5fl/fl LysM-Cre+ mice relative to autophagy-proficient littermates resulted in increased bacillary burden and excessive pulmonary inflammation characterized by neutrophil infiltration and IL-17 response with increased IL-1α levels. Macrophages from uninfected Atg5fl/fl LysM-Cre+ mice displayed a cell-autonomous IL-1α hypersecretion phenotype, whereas T cells showed propensity toward IL-17 polarization during nonspecific activation or upon restimulation with mycobacterial antigens. Thus, autophagy acts in vivo by suppressing both M. tuberculosis growth and damaging inflammation.


The EMBO Journal | 2005

Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax

Melissa Drysdale; Sara Heninger; Julie A. Hutt; Yahua Chen; C. Rick Lyons; Theresa M. Koehler

Bacillus anthracis, the agent of anthrax, produces a poly‐D‐glutamic acid capsule that has been implicated in virulence. Many strains missing pXO2 (96 kb), which harbors the capsule biosynthetic operon capBCAD, but carrying pXO1 (182 kb) that harbors the anthrax toxin genes, are attenuated in animal models. Also, noncapsulated strains are readily phagocytosed by macrophage cell lines, whereas capsulated strains are resistant to phagocytosis. We show that a strain carrying both virulence plasmids but deleted specifically for capBCAD is highly attenuated in a mouse model for inhalation anthrax. The parent strain and capsule mutant initiated germination in the lungs, but the capsule mutant did not disseminate to the spleen. A mutant harboring capBCAD but deleted for the cap regulators acpA and acpB was also significantly attenuated, in agreement with the capsule‐negative phenotype during in vitro growth. Surprisingly, an acpB mutant, but not an acpA mutant, displayed an elevated LD50 and reduced ability to disseminate, indicating that acpA and acpB are not true functional homologs and that acpB may play a larger role in virulence than originally suspected.


Infection and Immunity | 2004

Murine Model of Pulmonary Anthrax: Kinetics of Dissemination, Histopathology, and Mouse Strain Susceptibility

C. Rick Lyons; Julie Lovchik; Julie A. Hutt; Mary F. Lipscomb; Eugenia Wang; Sara Heninger; Lucy Berliba; Kristin Garrison

ABSTRACT Bioweapons are most often designed for delivery to the lung, although this route is not the usual portal of entry for many of the pathogens in the natural environment. Vaccines and therapeutics that are efficacious for natural routes of infection may not be effective against the pulmonary route. Pulmonary models are needed to investigate the importance of specific bacterial genes in virulence, to identify components of the host immune system that are important in providing innate and acquired protection, and for testing diagnostic and therapeutic strategies. This report describes the characteristics of host and Bacillus anthracis interactions in a murine pulmonary-infection model. The infective dose varied depending on the route and method of inoculation. The germination process in the lung began within 1 h of inoculation into the lung, although growth within the lung was limited. B. anthracis was found in the lung-associated lymph nodes ∼5 h after infection. Minimal pneumonitis was associated with the lung infection, but significant systemic pathology was noted after dissemination. Infected mice typically succumbed to infection ∼3 to 4 days after inoculation. The 50% lethal doses differed among inbred strains of mice, but within a given mouse strain, neither the age nor the sex of the mice influenced susceptibility to B. anthracis.


Infection and Immunity | 2005

Intranasal Vaccination Induces Protective Immunity against Intranasal Infection with Virulent Francisella tularensis Biovar A

Julie A. Hutt; Kristin Garrison; Lyudmila S. Berliba; Yan Zhou; C. Rick Lyons

ABSTRACT The inhalation of Francisella tularensis biovar A causes pneumonic tularemia associated with high morbidity and mortality rates in humans. Exposure to F. tularensis usually occurs by accident, but there is increasing awareness that F. tularensis may be deliberately released in an act of bioterrorism or war. The development of a vaccine against pneumonic tularemia has been limited by a lack of information regarding the mechanisms required to protect against this disease. Vaccine models for F. tularensis in inbred mice would facilitate investigations of the protective mechanisms and significantly enhance vaccine development. Intranasal vaccination with the attenuated live vaccine strain (LVS) of F. tularensis reproducibly protected BALB/c mice, but not C57BL/6 mice, against intranasal and subcutaneous challenges with a virulent clinical isolate of F. tularensis biovar A (NMFTA1). The resistance of LVS-vaccinated BALB/c mice to intranasal NMFTA1 challenge was increased 100-fold by boosting with live NMFTA1 but not with LVS. The protective response was specific for F. tularensis and required both CD4 and CD8 T cells. The vaccinated mice appeared outwardly healthy for more than 2 months after NMFTA1 challenge, even though NMFTA1 was recovered from more than half of the vaccinated mice. These results show that intranasal vaccination induces immunity that protects BALB/c mice from intranasal infection by F. tularensis biovar A.


Annals of the New York Academy of Sciences | 2007

Animal models of Francisella tularensis infection.

C. Rick Lyons; Terry H. Wu

Abstract:  The increased incidence of emerging infections has caused a resurgence in the development of animal models in order to study their pathophysiology and develop therapeutics against them. Optimizing these models and improving our ability to extrapolate information from animals to humans is critical because in many cases the animal model will represent the only modality for efficacy testing. Francisella tularensis (F. tularensis) is an emerging pathogen that fits this category. While there is a significant body of literature that has examined infections with F. tularensis in a variety of species, the optimal small animal model has yet to be defined. A vast majority of studies have used two strains of F. tularensis, the more virulent type A strain commonly found in North America and the less virulent type B strain common to Europe. None of the small animal models described in the literature thus far behave in a fashion identical to humans with respect to their sensitivity to SCHU S4 (type A) or live vaccine strains (LVS) (attenuated type B) and an ability of LVS vaccination to consistently protect against a SCHU S4 aerosol challenge, suggesting that significant work on animal model development still remains. This report briefly describes the parameters important for animal model development and reviews the literature related to animal models of F. tularensis, including the human model, and the characterization performed for those models.


Infection and Immunity | 2006

Toxin-Deficient Mutants of Bacillus anthracis Are Lethal in a Murine Model for Pulmonary Anthrax

Sara Heninger; Melissa Drysdale; Julie A. Lovchik; Julie A. Hutt; Mary F. Lipscomb; Theresa M. Koehler; C. Rick Lyons

ABSTRACT Bacillus anthracis, the etiologic agent of anthrax, produces at least three primary virulence factors: lethal toxin, edema toxin, and a capsule. The capsule is absolutely required for dissemination and lethality in a murine model of inhalation anthrax, yet the roles for the toxins during infection are ill-defined. We show in a murine model that when spores of specific toxin-null mutants are introduced into the lung, dissemination and lethality are comparable to those of the parent strain. Mutants lacking one or more of the structural genes for the toxin proteins, i.e., protective antigen, lethal factor, and edema factor, disseminated from the lung to the spleen at rates similar to that of the virulent parental strain. The 50% lethal dose (LD50) and mean time to death (MTD) of the mutants did not differ significantly from those of the parent. The LD50s or MTDs were also unaffected relative to those of the parent strain when mice were inoculated intravenously with vegetative cells. Nonetheless, histopathological examination of tissues revealed subtle but distinct differences in infections by the parent compared to some toxin mutants, suggesting that the host response is affected by toxin proteins synthesized during infection.


Infection and Immunity | 2007

Effects of Endogenous d-Alanine Synthesis and Autoinhibition of Bacillus anthracis Germination on In Vitro and In Vivo Infections

Matthew McKevitt; Katie M. Bryant; Salika M. Shakir; Jason L. Larabee; Steven R. Blanke; Julie A. Lovchik; C. Rick Lyons; Jimmy D. Ballard

ABSTRACT Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages. In the current study experiments determined the contribution of endogenous d-alanine production to the efficiency and timing of B. anthracis spore germination under in vitro and in vivo conditions. Racemase-mediated production of endogenous d-alanine by B. anthracis altered the kinetics for initiation of germination over a range of spore densities and exhibited a threshold effect wherein small changes in spore number resulted in major changes in germination efficiency. This threshold effect correlated with d-alanine production, was prevented by an alanine racemase inhibitor, and required l-alanine. Interestingly, endogenous production of inhibitory levels of d-alanine was detected under experimental conditions that did not support germination and in a germination-deficient mutant of B. anthracis. Racemase-dependent production of d-alanine enhanced survival of B. anthracis during interaction with murine macrophages, suggesting a role for inhibition of germination during interaction with these cells. Finally, in vivo experiments revealed an approximately twofold decrease in the 50% lethal dose of B. anthracis spores administered in the presence of d-alanine, indicating that rates of germination may be directly influenced by the levels of this amino acid during early stages of disease.


Infection and Immunity | 2007

Protective and Immunochemical Activities of Monoclonal Antibodies Reactive with the Bacillus anthracis Polypeptide Capsule

Thomas R. Kozel; Peter Thorkildson; Suzanne Brandt; William Welch; Julie A. Lovchik; David P. AuCoin; Julpohng Vilai; C. Rick Lyons

ABSTRACT Bacillus anthracis is surrounded by a polypeptide capsule composed of poly-gamma-d-glutamic acid (γDPGA). In a previous study, we reported that a monoclonal antibody (MAb F26G3) reactive with the capsular polypeptide is protective in a murine model of pulmonary anthrax. The present study examined a library of six MAbs generated from mice immunized with γDPGA. Evaluation of MAb binding to the capsule by a capsular “quellung” type reaction showed a striking diversity in capsular effects. Most MAbs produced a rim type reaction that was characterized by a sharp increase followed directly by a decrease in refractive index at the capsular edge. Some MAbs produced a second capsular reaction well beneath the capsular edge, suggesting complexity in capsular architecture. Binding of MAbs to soluble γDPGA was assessed by a fluorescence perturbation assay in which a change in the MAb intrinsic fluorescence produced by ligand binding was used as a reporter for antigen-antibody interaction. The MAbs differed considerably in the complexity of the binding curves. MAbs producing rim type capsule reactions typically produced the more complex binding isotherms. Finally, the protective activity of the MAbs was compared in a murine model of pulmonary anthrax. One MAb was markedly less protective than the remaining five MAbs. Characteristics of the more protective MAbs included a relatively high affinity, an immunoglobulin G3 isotype, and a complex binding isotherm in the fluorescence perturbation assay. Given the relatively monotonous structure of γDPGA, the results demonstrate a striking diversity in the antigen binding behavior of γDPGA antibodies.


Infection and Immunity | 2011

Antibodies Contribute to Effective Vaccination against Respiratory Infection by Type A Francisella tularensis Strains

Gopi Mara-Koosham; Julie A. Hutt; C. Rick Lyons

ABSTRACT Pneumonic tularemia is a life-threatening disease caused by inhalation of the highly infectious intracellular bacterium Francisella tularensis. The most serious form of the disease associated with the type A strains can be prevented in experimental animals through vaccination with the attenuated live vaccine strain (LVS). The protection is largely cell mediated, but the contribution of antibodies remains controversial. We addressed this issue in a series of passive immunization studies in Fischer 344 (F344) rats. Subcutaneous LVS vaccination induced a robust serum antibody response dominated by IgM, IgG2a, and IgG2b antibodies. Prophylactic administration of LVS immune serum or purified immune IgG reduced the severity and duration of disease in naïve rats challenged intratracheally with a lethal dose of the virulent type A strain SCHU S4. The level of resistance increased with the volume of immune serum given, but the maximum survivable SCHU S4 challenge dose was at least 100-fold lower than that shown for LVS-vaccinated rats. Protection correlated with reduced systemic bacterial growth, less severe histopathology in the liver and spleen during the early phase of infection, and bacterial clearance by a T cell-dependent mechanism. Our results suggest that treatment with immune serum limited the sequelae associated with infection, thereby enabling a sterilizing T cell response to develop and resolve the infection. Thus, antibodies induced by LVS vaccination may contribute to the defense of F344 rats against respiratory infection by type A strains of F. tularensis.


Infection and Immunity | 2009

Discriminating Virulence Mechanisms among Bacillus anthracis Strains by Using a Murine Subcutaneous Infection Model

Hitendra S. Chand; Melissa Drysdale; Julie A. Lovchik; Theresa M. Koehler; Mary F. Lipscomb; C. Rick Lyons

ABSTRACT Bacillus anthracis strains harboring virulence plasmid pXO1 that encodes the toxin protein protective antigen (PA), lethal factor, and edema factor and virulence plasmid pXO2 that encodes capsule biosynthetic enzymes exhibit different levels of virulence in certain animal models. In the murine model of pulmonary infection, B. anthracis virulence was capsule dependent but toxin independent. We examined the role of toxins in subcutaneous (s.c.) infections using two different genetically complete (pXO1+ pXO2+) strains of B. anthracis, strains Ames and UT500. Similar to findings for the pulmonary model, toxin was not required for infection by the Ames strain, because the 50% lethal dose (LD50) of a PA-deficient (PA−) Ames mutant was identical to that of the parent Ames strain. However, PA was required for efficient s.c. infection by the UT500 strain, because the s.c. LD50 of a UT500 PA− mutant was 10,000-fold higher than the LD50 of the parent UT500 strain. This difference between the Ames strain and the UT500 strain could not be attributed to differences in spore coat properties or the rate of germination, because s.c. inoculation with the capsulated bacillus forms also required toxin synthesis by the UT500 strain to cause lethal infection. The toxin-dependent phenotype of the UT500 strain was host phagocyte dependent, because eliminating Gr-1+ phagocytes restored virulence to the UT500 PA− mutant. These experiments demonstrate that the dominant virulence factors used to establish infection by B. anthracis depend on the route of inoculation and the bacterial strain.

Collaboration


Dive into the C. Rick Lyons's collaboration.

Top Co-Authors

Avatar

Julie A. Hutt

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa M. Koehler

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Heninger

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge