Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Rymer is active.

Publication


Featured researches published by C. Rymer.


Poultry Science | 2010

Comparison of algal and fish sources on the oxidative stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty acids

C. Rymer; Rachael A. Gibbs; D.I. Givens

Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the mat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.


Lipids | 2006

Effect of species and genotype on the efficiency of enrichment of poultry meat with n−3 polyunsaturated fatty acids

C. Rymer; D.I. Givens

The effect of poultry species (broiler or turkey) and genotype (Wrolstad or BUT T8 turkeys and Ross 308 or Cobb 500 broilers) on the efficiency with which dietary long-chain n−3 PUFA were incorporated into poultry meat was determined. Broilers and turkeys of both genotypes were fed one of six diets varying in FA composition (two replicates per genotype x diet interaction). Diets contained 50 g/kg added oil, which was either blended vegetable oil (control), orpartially replaced with linseed oil (20 or 40 g/kg diet), fish oil (20 or 40 g/kg diet), or a mixture of the two (20 g linseed oil and 20 g fish oil/kg diet). Feeds and samples of skinless breast and thigh meat were analyzed for FA. Worlstad dark meat was slightly more responsive than BUT T8 (P=0.046) to increased dietary 18∶3 concentrations (slopes of 0.570 and 0.465, respectively). The Ross 308 was also slightly more responsive than the Cobb 500 (P=0.002) in this parameter (slopes of 0.557 and 0.449). There were no other significant differences between the genotypes. There was some evidence (based on the estimates of the slopes and their associated standard errors) that white turkey meat was more responsive than white chicken meat to 20∶5 (slopes of 0.504 and 0.289 for turkeys and broilers, respectively). There was no relationship between dietary 18∶3 n−3 content and meat 20∶5 and 22∶6 contents. If birds do convert 18∶3 to higher FA, these acids are not then deposited in the edible tissues.


Poultry Science | 2012

Effect of n-3 fatty acids on immune function in broiler chickens

H. Al-Khalifa; D.I. Givens; C. Rymer; P. Yaqoob

There is interest in the enrichment of poultry meat with long-chain n-3 polyunsaturated fatty acids in order to increase the consumption of these fatty acids by humans. However, there is concern that high levels of n-3 polyunsaturated fatty acids may have detrimental effects on immune function in chickens. The effect of feeding increasing levels of fish oil (FO) on immune function was investigated in broiler chickens. Three-week-old broilers were fed 1 of 4 wheat-soybean basal diets that contained 0, 30, 50, or 60 g/kg of FO until slaughter. At slaughter, samples of blood, bursa of Fabricius, spleen, and thymus were collected from each bird. A range of immune parameters, including immune tissue weight, immuno-phenotyping, phagocytosis, and cell proliferation, were assessed. The pattern of fatty acid incorporation reflected the fatty acid composition of the diet. The FO did not affect the weight of the spleen, but it did increase thymus weight when fed at 50 g/kg (P < 0.001). Fish oil also lowered bursal weights when fed at 50 or 60 g/kg (P < 0.001). There was no significant effect of FO on immune cell phenotypes in the spleen, thymus, bursa, or blood. Feeding 60 g/kg of FO significantly decreased the percentage of monocytes engaged in phagocytosis, but it increased their mean fluorescence intensity relative to that of broilers fed 50 g/kg of FO. Lymphocyte proliferation was significantly decreased after feeding broiler chickens diets rich in FO when expressed as division index or proliferation index, although there was no significant effect of FO on the percentage of divided cells. In conclusion, dietary n-3 polyunsaturated fatty acids decrease phagocytosis and lymphocyte proliferation in broiler chickens, highlighting the need for the poultry industry to consider the health status of poultry when poultry meat is being enriched with FO.


Animal Feed Science and Technology | 1999

Effects of inoculum preparation method and concentration, method of inoculation and pre-soaking the substrate on the gas production profile of high temperature dried grass

C. Rymer; J.A. Huntington; D.I. Givens

The effects of various treatments on the gas production (GP) profile of high temperature dried grass (HTDG) incubated in vitro with buffered rumen fluid were recorded. The treatments investigated were increases in the concentration of rumen fluid (from 5% to 30%, v/v), mixing medium with the substrate from 0 h to 48 h before inoculation, and blending the rumen fluid prior to inoculation. Increasing rumen fluid concentration decreased final culture pH (p < 0.01), increased total gas production (A, p < 0.05) and gas yield (p < 0.01), decreased lag time (p < 0.001) and time to half maximum gas production (T1/2, p < 0.05), increased the fractional degradation rate (μ) at 1 h (p < 0.001) but did not affect μ at T1/2 and 48 h. There were two phases to the reaction, and increased concentration of rumen fluid increased the rate of the first phase (p < 0.001) and decreased the time taken to reach the second phase (p < 0.001). Mixing the substrate with medium prior to inoculation decreased T1/2, increased A and μ at T1/2 and 48 h (p < 0.001) but had no effect on μ at 1 h. The rate of the initial phase of the reaction was not affected but the rate of the second phase was increased and took less time to attain (p < 0.001). Increasing the length of time that the substrate was mixed with the medium decreased lag time and T1/2 (p < 0.001), increased μ at 1 h (p < 0.001) but had no effect on μ at T1/2 and 48 h. Initial rate of reaction was increased (p < 0.001) but the second phase was not affected. There was no difference in GP profile and rates of reaction if the substrate was mixed with the medium for 6 or 48 h, except that μ at 1 h was greater if the pre-incubation time was 48 h. Blending the rumen contents prior to inoculation did not affect the GP profile or reaction rate. The results indicate that the rate of gas production may be enhanced by increasing the rumen fluid concentration and mixing the medium with substrate prior to inoculation for up to 48 h. There is no benefit from blending the rumen contents prior to inoculation.


Food Chemistry | 2015

Effect of milk type and processing on iodine concentration of organic and conventional winter milk at retail: Implications for nutrition

Laura M. Payling; Darren Thomas Juniper; Chris Drake; C. Rymer; D. Ian Givens

Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P<0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P<0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P<0.001 and 268 μg/L: P<0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women.


British Journal of Nutrition | 2011

The effect of feeding modified soyabean oil enriched with C18 : 4 n-3 to broilers on the deposition of n-3 fatty acids in chicken meat.

C. Rymer; G. F. Hartnell; D.I. Givens

Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41-50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.


Journal of the Science of Food and Agriculture | 2010

Effects of vitamin E and fish oil inclusion in broiler diets on meat fatty acid composition and on the flavour of a composite sample of breast meat.

C. Rymer; D. Ian Givens

BACKGROUND Enriching poultry meat with long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) can increase low population intakes of LC n-3 PUFA, but fishy taints can spoil reheated meat. This experiment determined the effect of different amounts of LC n-3 PUFA and vitamin E in the broiler diet on the fatty acid composition and sensory characteristics of the breast meat. Ross 308 broilers (120) were randomly allocated to one of five treatments from 21 to 42 days of age. Diets contained (g kg(-1)) 0, 9 or 18 LC n-3 PUFA (0LC, 9LC, 18LC), and 100, 150 or 200 mg LD-alpha-tocopherol acetate kg(-1) (E). The five diets were 0LC100E, 9LC100E, 18LC100E, 18LC150E, 18LC200E, with four pens per diet, except 18LC100E (eight pens). Breast meat was analysed for fatty acids (uncooked) and sensory analysis by R-index (reheated). RESULTS LC n-3 PUFA content (mg kg(-1) meat) was 514 (0LC100E) and 2236 (9LC and 18LC). Compared with 0LC100E, meat from 18LC100E and 18LC150E tasted significantly different, while 23% of panellists detected fishy taints in 9LC100E and 18LC200E. CONCLUSION Chicken meat can be enriched with nutritionally meaningful amounts of LC n-3 PUFA, but > 100 mg dl-alpha-tocopherol acetate kg(-1) broiler diet is needed to protect reheated meat from oxidative deterioration.


Animal Science | 1998

The effect of host diet on the gas production profile of hay and high-temperature dried grass

J. A. Huntington; C. Rymer; D.I. Givens

One of the sources of variation in the in vitro gas production (GP) technique is the inoculum source that is used and this could be greatly affected by the diet that is given to the donor animal. To study the effect of the host diet on the gas production profiles of grass hay and high temperature dried grass, two cows were offered either a silage: barley diet (80:20 dry-matter (DM) basis; GSB) or barley straw (ad libitum; STR). An adaptation period of 3 weeks was used and each animal experienced each diet type twice. Rumen fluid and solids were collected at the end of each 3-week period and used to inoculate the substrate cultures. The volume of gas produced (mllg DM) was 379 and 289 for GSB and STR respectively; gas yield (mllg organic matter degraded) was 442 and 411. The maximum fractional rates of degradation (per h) were 0·067 and 0·061 and the time (h) taken to reach these rates were 5·3 and 12·6. None of these differences was significant. There were also no significant differences in the concentration of total volatile fatty acids (VFA) in the final incubation media, or in the molar proportions of individual VFA. These results suggest that the fermentation stoichiometry was not affected by donor animal diet and, while microbial activity from STR was lower, this did not significantly affect the GP profile. The difference in microbial activity between the two diets was perhaps minimized by taking the sample of rumen contents before the morning meal.


Conference on over- and undernutrition: challenges and approaches, Guildford, UK, 29 June-2 July 2009. | 2010

Long-chain n-3 PUFA: intakes in the UK and the potential of a chicken meat prototype to increase them

Rachael A. Gibbs; C. Rymer; D.I. Givens

With the wide acceptance of the long-chain (LC) n-3 PUFA EPA and DHA as important nutrients playing a role in the amelioration of certain diseases, efforts to understand factors affecting intakes of these fatty acids along with potential strategies to increase them are vital. Widespread aversion to oil-rich fish, the richest natural source of EPA and DHA, highlights both the highly suboptimal current intakes in males and females across all age-groups and the critical need for an alternative supply of EPA and DHA. Poultry meat is a popular and versatile food eaten in large quantities relative to other meats and is open to increased LC n-3 PUFA content through manipulation of the chickens diet to modify fatty acid deposition and therefore lipid composition of the edible tissues. It is therefore seen as a favourable prototype food for increasing human dietary supply of LC n-3 PUFA. Enrichment of chicken breast and leg tissue is well established using fish oil or fishmeal, but concerns about sustainability have led to recent consideration of algal biomass as an alternative source of LC n-3 PUFA. Further advances have also been made in the quality of the resulting meat, including achieving acceptable flavour and storage properties as well as understanding the impact of cooking on the retention of fatty acids. Based on these considerations it may be concluded that EPA- and DHA-enriched poultry meat has a very positive potential future in the food chain.


Conference on Over- and undernutrition: challenges and approaches | 2010

Postgraduate Symposium: Long-chain n-3 PUFA: intakes in the UK and the potential of a chicken meat prototype to increase them.

Rachael A. Gibbs; C. Rymer; D. Ian Givens

With the wide acceptance of the long-chain (LC) n-3 PUFA EPA and DHA as important nutrients playing a role in the amelioration of certain diseases, efforts to understand factors affecting intakes of these fatty acids along with potential strategies to increase them are vital. Widespread aversion to oil-rich fish, the richest natural source of EPA and DHA, highlights both the highly suboptimal current intakes in males and females across all age-groups and the critical need for an alternative supply of EPA and DHA. Poultry meat is a popular and versatile food eaten in large quantities relative to other meats and is open to increased LC n-3 PUFA content through manipulation of the chickens diet to modify fatty acid deposition and therefore lipid composition of the edible tissues. It is therefore seen as a favourable prototype food for increasing human dietary supply of LC n-3 PUFA. Enrichment of chicken breast and leg tissue is well established using fish oil or fishmeal, but concerns about sustainability have led to recent consideration of algal biomass as an alternative source of LC n-3 PUFA. Further advances have also been made in the quality of the resulting meat, including achieving acceptable flavour and storage properties as well as understanding the impact of cooking on the retention of fatty acids. Based on these considerations it may be concluded that EPA- and DHA-enriched poultry meat has a very positive potential future in the food chain.

Collaboration


Dive into the C. Rymer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke York

University of Reading

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Yaqoob

University of Reading

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge