C. S. Haley
York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. S. Haley.
Geophysical Research Letters | 2005
Cora E. Randall; V. L. Harvey; G. L. Manney; Yvan J. Orsolini; Mihail Codrescu; Christopher E. Sioris; Samuel Brohede; C. S. Haley; Larry L. Gordley; Joseph M. Zawodny; James M. Russell
Upper stratospheric enhancements in NOx (NO and NO2) were observed at high northern latitudes from March through at least July of 2004. Multi-satellite data analysis is used to examine the temporal evolution of the enhancements, to place them in historical context, and to investigate their origin. The enhancements were a factor of 4 higher than nominal at some locations, and are unprecedented in the northern hemisphere since at least 1985. They were accompanied by reductions in O-3 of more than 60% in some cases. The analysis suggests that energetic particle precipitation led to substantial NOx production in the upper atmosphere beginning with the remarkable solar storms in late October 2003 and possibly persisting through January. Downward transport of the excess NOx, facilitated by unique meteorological conditions in 2004 that led to an unusually strong upper stratospheric vortex from late January through March, caused the enhancements.
Journal of Geophysical Research | 2005
P. Ricaud; Franck Lefèvre; Gwenael Berthet; Donal P. Murtagh; E. J. Llewellyn; G. Mégie; E. Kyrölä; G.W. Leppelmeier; H. Auvinen; Cathy Boonne; Samuel Brohede; D. A. Degenstein; J. De La Noë; E. Dupuy; L. El Amraoui; Patrick Eriksson; Wayne F. J. Evans; U. Frisk; R. L. Gattinger; F. X. Girod; C. S. Haley; S. Hassinen; Alain Hauchecorne; C. Jiménez; E. Kyrö; N. Lautie; E. Le Flochmoën; N. D. Lloyd; J. C. McConnell; Ian C. McDade
In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O3) and chlorine monoxide (ClO), a key constituent responsible for the so-called “ozone hole”, together with nitrous oxide (N2O), a dynamical tracer, and nitric acid (HNO3) and nitrogen dioxide (NO2), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19–20 September), during (24–25 September), and after (1–2 and 4–5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19–20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O3 loss at 500 K. On 25–26 September the unusual morphology of the vortex is monitored by the N2O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1–2 October, leading to the end of the chemical O3 loss, while HNO3 and NO2 fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO2. The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO3 in the model, which do not produce enough NO2 in presence of sunlight to deactivate chlorine as fast as observed by Odin.
Journal of Geophysical Research | 2004
C. S. Haley; Samuel Brohede; Christopher E. Sioris; Erik Griffioen; Donal P. Murtagh; Ian C. McDade; Patrick Eriksson; Edward J. Llewellyn; A. Bazureau; Florence Goutail
Scientific studies of the major environmental questions of global warming and ozone depletion require global data sets of atmospheric constituents with relevant temporal and spatial resolution. In this paper global number density profiles of O3 and NO2 are retrieved from Odin/OSIRIS limb-scattered sunlight measurements, using the Maximum A Posteriori estimator. Differential Optical Absorption Spectroscopy is applied to OSIRIS radiances as an intermediate step, using the wavelength windows 571-617 nm for O3 and 435-451 nm for NO2. The method is computationally efficient for processing OSIRIS data on an operational basis. Results show that a 2-3 km height resolution is generally achievable between about 12 km and 45 km for O3 with an estimated accuracy of 13\% at the peak and between about 15 km and 40 km for NO2 with an estimated accuracy of 10\% at the peak. First validations of the retrieved data indicate a good agreement both with other retrieval techniques applied to OSIRIS measurements and with the results of other instruments. Once the validation has reached a confident level, the retrieved data will be used to study important stratospheric processes relevant to global environmental problems. The unique NO2 data set will be of particular interest for studies of nitrogen chemistry in the middle atmosphere.
Journal of Geophysical Research | 2003
Christopher E. Sioris; C. S. Haley; Chris A. McLinden; Christian von Savigny; Ian C. McDade; J. C. McConnell; Wayne F. J. Evans; N. D. Lloyd; Edward J. Llewellyn; Kelly Chance; Thomas P. Kurosu; Donal P. Murtagh; U. Frisk; K. Pfeilsticker; H. Bösch; Frank Weidner; Kimberly Strong; J. Stegman; G. Mégie
[1] Vertical profiles of nitrogen dioxide in the 19–40 km altitude range are successfully retrieved over the globe from Optical Spectrograph and Infrared Imager System (OSIRIS) limb scatter observations in late 2001 and early 2002. The inclusion of multiple scattering in the radiative transfer model used in the inversion algorithm allows for the retrieval of NO2 down to 19 km. The slant column densities, which represent the observations in the inversion, are obtained by fitting the fine structure in normalized radiance spectra over the 435–449 nm range, where NO2 electronic absorption is readily observable because of long light paths through stratospheric layers rich in this constituent. Details of the spectral fitting and inversion algorithm are discussed, including the discovery of a pseudo-absorber associated with pixelated detectors and a new method to verify altitude registration. Comparisons are made with spatially and temporally coincident profile measurements of this photochemically active trace gas. Better than 20% agreement is obtained with all correlative measurements over the common retrieval altitude range, confirming the validity of OSIRIS NO2 profiles. Systematic biases in the number densities are not observed at any altitude. A ‘‘snapshot’’ meridional cross section between 40� N and 70� S is shown from observations during a fraction of an orbit. INDEX TERMS: 0340 Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry; 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 0394 Atmospheric Composition and Structure: Instruments and techniques; 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics (0341, 0342); KEYWORDS: optical, Sun-synchronous, polar-orbiting, Fraunhofer, Ring effect, iterative onion peel
Geophysical Research Letters | 2004
Svetlana V. Petelina; E. J. Llewellyn; D. A. Degenstein; N. D. Lloyd; R. L. Gattinger; C. S. Haley; C. von Savigny; Erik Griffioen; Ian C. McDade; Wayne F. J. Evans; Donal P. Murtagh; J. De La Noë
We present first statistical comparison results for stratospheric ozone density profiles retrieved from Odin/OSIRIS limb scattered radiance with 1220 coincident POAM III and 205 coincident ozonesonde measurements. Profiles are compared on a monthly basis from November 2001 to October 2002. Most of the time, differences between OSIRIS mean profiles and those measured by POAM III and ozonesondes were 5-7% between 15 km and 32 km, and within 15% above 32 km. In April-July 2002, OSIRIS mean profiles appear shifted downward by ∼1 km, introducing a difference of about 10% with POAM III and about 25% with ozonesonde profiles between 15 km and 32 km. This study demonstrates that outside the April-July 2002 period, the OSIRIS ozone profiles agree well with coincident ozonesonde and POAM III ozone profiles and make a valuable addition to the international ozone database available for research into global ozone change.
Journal of Geophysical Research | 2010
C. A. McLinden; C. S. Haley; N. D. Lloyd; F. Hendrick; A. Rozanov; B.-M. Sinnhuber; Florence Goutail; D. A. Degenstein; E. J. Llewellyn; Christopher E. Sioris; M. Van Roozendael; Jean-Pierre Pommereau; W. Lotz; J. P. Burrows
A 7+ year (2001–2008) data set of stratospheric BrO profiles measured by the Optical Spectrograph and Infra-Red Imager System (OSIRIS) instrument, a UV-visible spectrometer measuring limb-scattered sunlight from the Odin satellite, is presented. Zonal mean radiance spectra are computed for each day and inverted to yield effective daily zonal mean BrO profiles from 16 to 36 km. A detailed description of the retrieval methodology and error analysis is presented. Single-profile precision and effective resolution are found to be about 30% and 3–5 km, respectively, throughout much of the retrieval range. Individual profile and monthly mean comparisons with ground-based, balloon, and satellite instruments are found to agree to about 30%. A BrO climatology is presented, and its morphology and correlation with NO2 is consistent with our current understanding of bromine chemistry. Monthly mean Bry maps are derived. Two methods of calculating total Bry in the stratosphere are used and suggest (21.0 ± 5.0) pptv with a contribution from very short lived substances of (5.0 ± 5.0) pptv, consistent with other recent estimates.
Bulletin of the American Meteorological Society | 2012
Christopher Anthony McLinden; Samuel Brohede; D. A. Degenstein; W. J. F. Evans; R. L. Gattinger; C. S. Haley; E. J. Llewellyn; N. D. Lloyd; P. Loewen; Randall V. Martin; J. C. McConnell; Ian C. McDade; Donal P. Murtagh; L. Rieger; C. von Savigny; Patrick E. Sheese; Christopher E. Sioris; Brian H. Solheim; Kimberly Strong
Into year 11 of a 2-yr mission, OSIRIS is redefining how limb-scattered sunlight can be used to probe the atmosphere, even into the upper troposphere.
Canadian Journal of Physics | 2007
Samuel Brohede; Chris A. McLinden; Gwenael Berthet; C. S. Haley; Donal P. Murtagh; Christopher E. Sioris
A climatology of stratospheric nitrogen dioxide (NO2), in terms of mean and standard deviation, as a function of latitude (5° bins); altitude (10–46 km in 2 km bins); local solar time (24 h); and month is constructed based on the Odin/OSIRIS limb-scattering data from 2002–2005. The measured profiles, given at specific local solar times, are scaled to all 24 h using a photochemical box model. The Odin orbit gives near global coverage around the equinoxes and hemispheric coverage elsewhere, due to lack of sunlight. The mean NO2 field at a specific local solar time involves high concentrations in the polar summer, peaking at around 25 km, with a negative equatorward gradient. Distinct high levels between 40–50° latitude at 30 km in the winter/spring hemisphere are also found, associated with the so-called {Noxon-cliff}. The diurnal cycle reveals the lowest NO2 concentrations just after sunrise and steep gradients at twilight. The 1σ standard deviation is generally quite low, around 20%, except for winter and spring high latitudes, where values are well above 50% and stretch through the entire stratosphere, a phenomenon probably related to the polar vortex. It is also found that NO2 concentrations are log-normally distributed. Comparisons to a climatology based on data from a (REPROBUS) chemical transport model for the same time period reveal relative differences below 20% in general, which is comparable to the estimated OSIRIS systematic uncertainty. Clear exceptions are the polar regions in winter/spring throughout the atmosphere and equatorial regions below 25 km, where OSIRIS is relatively higher by 40% and more. These discrepancies are most likely attributable to limitations of the model, but this has to be investigated further.
Journal of Geophysical Research | 2008
S. Tukiainen; S. Hassinen; Annika Seppälä; H. Auvinen; E. Kyrölä; J. Tamminen; C. S. Haley; N. D. Lloyd; Pekka T. Verronen
In this paper we present the Modified Onion Peeling (MOP) inversion method, which is for the first time used to retrieve vertical profiles of stratospheric trace gases from Odin/OSIRIS limb scatter measurements. Since the original publication of the method in 2002, the method has undergone major modifications discussed here. The MOP method now uses a spectral microwindow for the NO 2 retrieval, instead of the wide UV-visible band used for the ozone, air, and aerosol retrievals. We give a brief description of the algorithm itself and show its performance with both simulated and real data. Retrieved ozone and NO 2 profiles from the OSIRIS measurements were compared with data from the GOMOS and HALOE instruments. No more than 5% difference was found between OSIRIS daytime and GOMOS nighttime ozone profiles between 21 and 45 km. The difference between OSIRIS and HALOE sunset NO 2 mixing ratio profiles was at most 25% between 20 and 40 km. The neutral air density was compared with the ECMWF analyzed data and around 5% difference was found at altitudes from 20 to 55 km. However, OSIRIS observations yield as much as 80% greater aerosols number density than GOMOS observations between 15 and 35 km. These validation results indicate that the quality of MOP ozone, NO 2 , and neutral air is good. The new version of the method introduced here is also easily expanded to retrieve additional species of interest.
Atmospheric Chemistry and Physics | 2007
Christopher E. Sioris; C. A. McLinden; Randall V. Martin; Bastien Sauvage; C. S. Haley; N. D. Lloyd; E. J. Llewellyn; Peter F. Bernath; C. D. Boone; Samuel Brohede; C. T. McElroy
The purpose of this study is to perform a global search of the upper troposphere (z ≥10 km) for enhancements of nitrogen dioxide and determine their sources. This is the first application of satellite-based limb scattering to study upper tropospheric NO2. We have searched two years (May 2003–May 2005) of OSIRIS (Optical Spectrograph and Infrared Imager System) operational NO 2concentrations (version 2.3/2.4) to find large enhancements in the observations by comparing with photochemical box model calculations and by identifying local maxima in NO 2 volume mixing ratio. We find that lightning is the main production mechanism responsible for the large enhancements in OSIRIS NO 2 observations as expected. Similar patterns in the abundances and spatial distribution of the NO 2 enhancements are obtained by perturbing the lightning within the GEOS-Chem 3-dimensional chemical transport model. In most cases, the presence of lightning is confirmed with coincident imagery from LIS (Lightning Imaging Sensor) and the spatial extent of the NO2 enhancement is mapped using nadir observations of tropospheric NO 2 at high spatial resolution from SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) and OMI (Ozone Monitoring Instrument). The combination of the lightning and chemical sensors allows us to investigate globally the role of lightning to the abundance of NO 2 in the upper troposphere (UT). Lightning contributes 60% of the tropical upper tropospheric NO2 in GEOS-Chem simulations. The spatial and temporal distribution of NO2 enhancements from lightning (May Correspondence to: C. E. Sioris ([email protected]) 2003–May 2005) is investigated. The enhancements generally occur at 12 to 13 km more frequently than at 10 to 11 km. This is consistent with the notion that most of the NO 2 is forming and persisting near the cloud top altitude in the tropical upper troposphere. The latitudinal distribution is mostly as expected. In general, the thunderstorms exhibiting weaker vertical development (e.g. 11 ≤z≤13 km) extend latitudinally as far poleward as 45 ◦ but the thunderstorms with stronger vertical development (z ≥14 km) tend to be located within 33 of the equator. There is also the expected hemispheric asymmetry in the frequency of the NO 2 enhancements, as most were observed in the northern hemisphere for the period analyzed.