Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. S. Prakash is active.

Publication


Featured researches published by C. S. Prakash.


Euphytica | 1997

Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.)

Guohao He; C. S. Prakash

The detection of DNA polymorphism in cultivated peanut (Arachis hypogaea L.) is reported here for the first time. The DNA amplification fingerprinting (DAF) and amplified fragment length polymorphism (AFLP) approaches were tested for their potential to detect genetic variation in peanut. The AFLP approach was more efficient as 43% of the primer combinations detected polymorphic DNA markers in contrast to 3% with the DAF approach. However, the number of polymorphic bands identified using primers selected in both approaches was comparable. In the DAF study, when 559 primers of varying types were screened, 17 (mostly 10-mer types) detected polymorphism producing an average of 3.7 polymorphic bands per primer with a total of 63 polymorphic markers. In the AFLP study, when 64 primer combinations (three selective nucleotides) corresponding to restriction enzymes Eco RI and Mse I were screened, 28 detected polymorphism. On an average, 6.7% of bands obtained from these 28 primer pairs were polymorphic resulting in a total of 111 AFLP markers. Our results demonstrate that both AFLP and DAF approaches can be employed to generate DNA markers in peanut and thus have potential in the marker-assisted genetic improvement and germplasm evaluation of this economically important crop.


Euphytica | 2005

Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.)

Guohao He; Ronghua Meng; Hui Gao; Baozhu Guo; Guoqing Gao; Melanie Newman; Roy N. Pittman; C. S. Prakash

Cultivated peanut (Arachis hypogaea L.) consists of six botanical varieties. Identification of DNA markers associated with botanical varieties would be useful in plant genotyping, germplasm management, and evolutionary studies. We have developed 130 simple sequence repeat (SSR) markers in peanut, 38 of which were used in this study because of their ability in detecting genetic polymorphism among 24 peanut accessions. Eight SSR markers were found useful to classify botanical varieties. Among them, six SSR markers were specific to botanical varieties fastigiata and vulgaris, one to botanical varieties hypogaea and hirsuta, and one to botanical varieties peruviana, and aequatoriana. Also, three of them derived from peanut expressed sequence tags (ESTs) were associated with putative genes. As botanical varieties have different morphological traits and belong to different subspecies in A. hypogaea, these markers might be associated with genes involved in the expression of morphological traits. The results also suggested that SSRs (also called microsatellites) might play a role in shaping evolution of cultivated peanut. Multiplex PCR of botanical variety-specific markers could be applied to facilitate efficient genotyping of the peanut lines.


Genetic Resources and Crop Evolution | 2001

Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers

Guohao He; C. S. Prakash

Forty-four accessions of cultivated peanut (Arachis hypogaea L.) representing sixbotanical varieties of two subspecies along with three accessions ofthe wild relative A. monticola Krapov et Rigoni were evaluated for their genetic relationships using theAFLP marker technology. Fifteen AFLP primer pairs (EcoRI/MseI) generated 28distinct polymorphic markers that were employed to develop uniqueprofiles of all accessions and to construct a phenogram. The resultsshowed that the botanical varieties aequatoriana and peruviana werecloser to subspecies hypogaea than subspeciesfastigiata Waldr. to which they belong, and the wildA. monticola was notdistinct from the cultivated A.hypogaea. Although the extent of geneticdiversity in peanut is low compared to many other crops, our studiesshow that by employing the AFLP approach, sufficient DNA variationcan be detected in the cultivated peanut germplasm to conductevolutionary studies.


Plant Cell Reports | 1994

Thidiazuron promotes high frequency regeneration of peanut (Arachis hypogaea) plants in vitro

Matand Kanyand; Ananta Porobo Dessai; C. S. Prakash

Multiple shoots were induced on Valenciatype peanut (Arachis hypogaea L.) explants cultured in vitro on a nutrient medium supplemented with thidiazuron. Zygotic embryos excised from mature seeds were germinated on Murashige-Skoog nutrient medium, and the resulting plantlets (8 days-old) were used as a source of explants. When cultured on a nutrient medium with increasing levels of thidiazuron (0.5 to 30 mg/l), expiants from various parts of the peanut plant (except the root) produced multiple shoot primordia which subsequently developed into individual shoots. Hypocotyl and cotyledon explants produced shoots in higher numbers than other explants (20 shoots per hypocotyl explant at all thidiazuron concentrations and 15 shoots per cotyledon explant at 30 mg/l). Shoots rooted normally on a basal Murashige-Skoog medium containing charcoal and developed into healthy and fertile plants when planted in soil.


Plant Cell Reports | 1992

Genetic transformation of sweet potato by particle bombardment.

C. S. Prakash; U. Varadarajan

Transient and stable expression of foreign genes has been achieved in sweet potato using the particle bombardment system of gene delivery. Callus and root isolates of two genotypes (Jewel and TIS-70357) with positive signs of transformation have been recovered. Tungsten microcarriers coated with plasmid DNA (pBI 221 containing the gusA gene) were accelerated at high velocity using a biolistic device into sweet potato target tissues. Histochemical examination of bombarded leaf and petiole explants revealed that most had cells expressing the gusA gene. When explants were cultured, calli and roots developed in most bombarded tissues. Similar results but with a lower frequency of transformation were observed when the plasmid pBI 121 (with gusA and antibiotic resistance npt II genes) was employed and bombarded explants cultured on an antibiotic selection medium. Subcultured roots and calli were positive for gusA expression when tested even after one year of in vitro culture, and thus the expression of the foreign gene is fairly stable. The particle bombardment approach of gene delivery appears to have a potential for generating transgenic sweet potatoes with useful agronomic traits.


Plant Molecular Biology Reporter | 1991

A rapid and efficient method for the extraction of total DNA from the sweet potato and its related species

G. S. Varadarajan; C. S. Prakash

Secondary metabolites, latex/mucilagenous secretions, polysaccharides, and proteins interfere with the extraction of high-quality, restrictable total cellular DNA from sweet potato [Ipomoea batatas (L.) Lamk.] and related species. A method for the DNA extraction is described which overcomes these problems.


In Vitro Cellular & Developmental Biology – Plant | 1998

Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.).

Marceline Egnin; Adalgisa Mora; C. S. Prakash

SummaryParameters enhancingAgrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing β-glucuronidasewidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The ‘Valencia Select’ market type cv. New Mexico was more amenable toAgrobacterium transformation than the ‘runner’ market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmedAgrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer ofwidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-skoog (MS) media prior to infection byAgrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 μM or 11.31 μM) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 μM or 2.0 μM) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per 1 prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.


BMC Plant Biology | 2012

Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.)

Yongli Zhao; Roxanne Williams; C. S. Prakash; Guohao He

BackgroundDate palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding.ResultsIn this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins.ConclusionDate palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.


Plant Cell Reports | 1996

Rapid and repetitive plant regeneration in sweetpotato via somatic embryogenesis.

Qi Zheng; Ananta Porobo Dessai; C. S. Prakash

An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and petiole expiants has been developed in sweetpotato [Ipomoea batatas L. (Lam.)]. The optimal somatic embryogenic response was obtained in the genotype PI 318846-3 with a two-step protocol: (1) stage I-incubation of expiants in the dark for 2 weeks on Murashige Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5 mg/l) and 6-benzylaminopurine (0.25 mg/l) and, (2) stage II-culture in the light on MS medium with abscisic acid (ABA) (2.5 mg/l). The addition of ABA was critical for enhanced production of somatic embryos. Secondary somatic embryos were produced from the primary embryos cultured on MS medium with 2,4-D at 0.2 mg/l. The somatic embryos were converted into normal plantlets when cultured on basal MS medium. Upon transfer to soil, plants grew well and appeared normal with no mortality. The system of somatic embryogenesis described here will facilitate tissue culture, germplasm conservation and gene transfer research of sweetpotato due to its rapidity (6 to 10 weeks), prolific plant production by direct embryogenesis, ease of secondary somatic embryo production and reproducibility.


BMC Research Notes | 2012

Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database

Yongli Zhao; C. S. Prakash; Guohao He

BackgroundThere are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut.FindingsWe compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased.ConclusionsThe assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders.

Collaboration


Dive into the C. S. Prakash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert L. Jarret

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan McHughen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge