C. S. Sheela Rani
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. S. Sheela Rani.
Biochemical and Biophysical Research Communications | 1985
C. S. Sheela Rani; Aubrey E. Boyd; James B. Field
The intracellular free calcium concentration, [Ca2+]i, has been measured in dog thyroid cells using the fluorescent Ca2+-indicator, quin2. Acetylcholine or its non-hydrolyzable analog, carbamylcholine rapidly increased [Ca2+]i by 40 +/- 4% (mean +/- SE) over the basal level of 81 +/- 2 nM. This increase was totally abolished by atropine, a muscarinic cholinergic receptor blocker, but was not influenced by verapamil, a voltage dependent-calcium channel blocker. Depletion of extracellular Ca2+ by the addition of EGTA, diminished but did not abolish the response to carbamylcholine. These data suggest that cholinergic effectors increase [Ca2+]i by mobilization of Ca2+ from intracellular stores rather than from an influx of Ca2+. Addition of TSH, isoproterenol, phorbol ester, dibutyryl cyclic GMP or cyclic AMP did not elicit any change in [Ca2+]i suggesting that their action may not involve any mobilization of intracellular Ca2+. These data provide direct evidence that in the thyroid cell, cholinergic agents act via their receptors to cause a rapid increase in [Ca2+]i, which may mediate their metabolic effects.
Psychoneuroendocrinology | 2013
Brian Bingham; C. S. Sheela Rani; Alan Frazer; Randy Strong; David A. Morilak
Exposure to early-life stress is a risk factor for the development of cognitive and emotional disorders later in life. We previously demonstrated that prenatal stress (PNS) in rats results in long-term, stable changes in central stress-response systems and impairs the ability to extinguish conditioned fear responding, a component of post-traumatic stress disorder (PTSD). Maternal corticosterone (CORT), released during prenatal stress, is a possible mediator of these effects. The purpose of the present study was to investigate whether fetal exposure to CORT at levels induced by PNS is sufficient to alter the development of adult stress neurobiology and fear extinction behavior. Pregnant dams were subject to either PNS (60 min immobilization/day from ED 14-21) or a daily injection of CORT (10mg/kg), which approximated both fetal and maternal plasma CORT levels elicited during PNS. Control dams were given injections of oil vehicle. Male offspring were allowed to grow to adulthood undisturbed, at which point they were sacrificed and the medial prefrontal cortex (mPFC), hippocampus, hypothalamus, and a section of the rostral pons containing the locus coeruleus (LC) were dissected. PNS and prenatal CORT treatment decreased glucocorticoid receptor protein levels in the mPFC, hippocampus, and hypothalamus when compared to control offspring. Both treatments also decreased tyrosine hydroxylase levels in the LC. Finally, the effect of prenatal CORT exposure on fear extinction behavior was examined following chronic stress. Prenatal CORT impaired both acquisition and recall of cue-conditioned fear extinction. This effect was additive to the impairment induced by previous chronic stress. Thus, these data suggest that fetal exposure to high levels of maternal CORT is responsible for many of the lasting neurobiological consequences of PNS as they relate to the processes underlying extinction of learned fear. The data further suggest that adverse prenatal environments constitute a risk factor for PTSD-like symptomatology, especially when combined with chronic stressors later in life.
Archives of Biochemistry and Biophysics | 1985
Akira Tanabe; Thor B. Nielsen; C. S. Sheela Rani; James B. Field
Not all of the effects of thyroid-stimulating hormone (TSH) on the thyroid are mediated by activation of the adenylate cyclase-cyclic AMP system, indicating that other control systems must also exist. Although a calcium-phospholipid-dependent protein kinase (protein kinase C) and specific substrates had been identified in thyroid tissue, their responsiveness to TSH and other stimulators has not been determined. In thyroid cells which had been preloaded with [32P]orthophosphate, TSH and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) increased the phosphorylation of a 33K polypeptide substrate within 5 min in a dose-dependent fashion. The effect was observed with 1 mU/ml TSH and 3 nM TPA and was maximal with 100 mU/ml TSH and 100 nM TPA. The biologically inactive analog of TPA, 4 alpha-phorbol, had no effect. Isobutylmethylxanthine (IBMX) decreased the phosphorylation of the 33K polypeptide and inhibited the effect of TSH and TPA, indicating that the phosphorylation is not mediated by cyclic AMP. TSH and IBMX, but not TPA, augmented phosphorylation of a 38K polypeptide, suggesting involvement of cyclic AMP. In contrast TPA, but not TSH, increased the phosphorylation of 58K and 28K polypeptides. TSH, but not TPA or 4 alpha-phorbol, elevated the cyclic AMP level of thyroid slices. Incubation of thyroid slices with TSH or TPA significantly decreased protein kinase C activity in the 100,000g cytosol fraction and increased it in an extract of plasma membranes. The effect was present within 5 min and was maximal by 30 min. The effect was observed with 100 mU/ml TSH or 1 nM TPA. The stimulation by TSH or TPA of protein kinase C and its translocation from the cytosol to the plasma membranes of thyroid tissue may provide another mechanism for control of thyroid cell metabolism.
Molecular Pharmacology | 2009
C. S. Sheela Rani; Narayanasamy Elango; Shou Shu Wang; Kazuto Kobayashi; Randy Strong
Glucocorticoids (GCs) generally stimulate gene transcription via consensus glucocorticoid response elements (GREs) located in the promoter region. To identify the GRE in the rat tyrosine hydroxylase (TH) gene promoter, we transiently transfected PC12 cells with a 9-kilobase (kb) TH promoter-luciferase (Luc) construct. Dexamethasone (Dex) stimulated Luc activity, which was abolished by mifepristone (RU486). Serial deletion mutations revealed a Dex-responsive 7-base pair (bp) sequence, TGACTAA, located at -5734 to -5728. Deletion of just these seven nucleotides from the 9-kb promoter completely abolished the Dex response and partially reduced the response to phorbol ester but not to forskolin. The Dex response was fully retained in a construct in which most of the 9-kb promoter was deleted, except for 100 bp around the -5.7-kb region, clearly identifying this 7-bp sequence as solely responsible for GC responsiveness. Conversely, deletion of the proximal cAMP-response element (-45/-38) or activator protein-1 (AP-1) (-207/-201) sites in the 9-kb promoter did not affect Dex and phorbol ester responses. A radiolabeled 25-bp promoter fragment bearing the 7-bp TH-GRE/AP-1 showed specific binding to PC12 nuclear proteins. Using antibodies against the glucocorticoid receptors and AP-1 family of proteins and primers for the TH-GRE/AP-1 region, we detected a specific DNA amplicon in a chromatin immunoprecipitation assay. This 7-bp TH-GRE/AP-1 sequence (TGACTAA) does not bear similarity to any known GRE but closely resembles the consensus AP-1 binding site, TGACTCA. Our studies describe for the first time a novel GRE/AP-1 site present in the TH gene promoter that is critical for glucocorticoid regulation of the TH gene.
Recent Progress in Hormone Research | 1974
N. R. Moudgal; A. Jagannadha Rao; Maneckjee Rhoda; K. Muralidhar; Venkatramaiah Mukku; C. S. Sheela Rani
Publisher Summary This chapter discusses the preparation and characterization of gonadotropin antibodies. Antibodies to gonadotropic hormones by virtue of their ability to react with gonadotropins across species barriers are utilized in wide applications. Immunoassays of heterologous nature have provided information on the similar secretory patterns of gonadotropins in a wide variety of animals in different physiological states and under different stresses. The chapter discusses the causal relationship of gonadotropin levels to physiological function. Hormone antibodies are used as specific antagonists in studies on the physiological functions of hormones. An analysis of events occurring at midcycle or proestrus shows that the threshold of luteinizing hormone (LH) for induction of ovulation and perhaps initiation of luteinization is high, and this appears to be reflected by the surge. FSH surge occurring at the same time is involved in triggering a fresh wave of folliculogenesis and this has no direct association with the immediate ovulatory process. The need for FSH appears to be much more stringent at this phase than at any other time during follicular maturation. The role of LH during the follicular phase appears to be one of synergism with FSH, its need perhaps increasing as the follicle matures.
Andrologia | 2009
A. Jagannadha Rao; C. S. Sheela Rani; N. Ravindranath; N. R. Moudgal
Summary Adult male bonnet monkeys maintained under regulated light: dark conditions exhibit a nycthemeral surge of testosterone. The present study attempts to determine the effect of administration of drugs that modulate prolactin levels like ergobromocriptine (EBC) and chlorpromazine (CPZ) on testosterone production.
Molecular and Cellular Endocrinology | 1978
C. S. Sheela Rani; N. R. Moudgal
Abstract A method is described for monitoring the concentration of endogenous receptor-bound gonadotropin in the ovarian tissue. This involved development of a radioimmunoassay procedure, the validity of which for measuring all of the tissue-bound hormone has been established. The specificity of the method of measurement was indicated by the fact that high levels of FSH could be measured only in target tissue such as follicles, while non-target organs showed little FSH. Using this method, the amount of FSH in the non-luteal ovarian tissue of the hamster at different stages of the estrous cycle was quantitated and compared with serum FSH levels found at these times. No correlation could be found between serum and tissue FSH levels at all times. On the morning of estrus, for example, when the serum level of FSH was high, the ovarian concentration was low, and on the evening of diestrus-2 the ovary exhibited high concentration of FSH, despite the serum FSH concentration being low at this time. The highest concentration of FSH in the ovary during the cycle was found on the evening of proestrus. Although a large amount of this was found in the Graafian follicles, a considerable amount could still be found in the ‘growing’ follicles. Ovarian FSH concentration could be considered to be a reflection of FSH receptor content, since preventing the development of FSH receptors by blocking initiation of follicular development during the cycle resulted in a decrease in the concentration of FSH in the ovary. The high concentration of FSH in the ovary seen on the evening of diestrus-2 was not influenced either by varying the concentration of estrogen or by neutralization of LH. Neutralization of FSH on diestrus-2, on the other hand, caused a drastic reduction in the ovarian LH concentration on the next day (i.e. at proestrus), thus suggesting the importance of FSH in the induction of LH receptors.
Journal of Neurochemistry | 2013
C. S. Sheela Rani; Alexandra E. Soto-Piña; Lorraine Iacovitti; Randy Strong
The human tyrosine hydroxylase (hTH) gene has a 42 bp evolutionarily conserved region designated (CR) II at −7.24 kb, which bears 93% homology to the region we earlier identified as containing the glucocorticoid response element, a 7 bp activator protein‐1 (AP‐1)‐like motif in the rat TH gene. We cloned this hTH‐CRII region upstream of minimal basal hTH promoter in luciferase (Luc) reporter vector, and tested glucocorticoid responsiveness in human cell lines. Dexamethasone (Dex) stimulated Luc activity of hTH‐CRII in HeLa cells, while mifepristone, a glucocorticoid receptor (GR) antagonist, prevented Dex stimulation. Deletion of the 7 bp 5′‐TGACTAA at −7243 bp completely abolished the Dex‐stimulated Luc activity of hTH‐CRII construct. The AP‐1 agonist, tetradeconoyl‐12,13‐phorbol acetate (TPA), also stimulated hTH promoter activity, and Dex and TPA together further accentuated this response. Chromatin immunoprecipitation assays revealed the presence of both GR and AP‐1 proteins, especially Jun family members, at this hTH promoter site. Dex did not stimulate hTH promoter activity in a catecholaminergic cell line, which had low endogenous GR levels, but did activate the response when GR was expressed exogenously. Thus, our studies have clearly identified a glucocorticoid‐responsive element in a 7 bp AP‐1‐like motif in the promoter region at −7.24 kb of the human TH gene.
Steroids | 1978
C. S. Sheela Rani; N. R. Moudgal
: The effect of neutralizing endogenous follicle stimulating hormone (FSH) or luteinizing hormone (LH) with specific antisera on the in vivo and in vitro synthesis of estrogen in the ovary of cycling hamster was studied. Neutralization of FSH or LH on proestrus resulted in a reduction in the estradiol concentration of the ovary on diestrus-2 and next proestrus, suggesting an impairment in follicular development. Injection of FSH antiserum at 0900 h of diestrus-2 significantly reduced the ovarian estradiol concentration within 6--7 h. Further, these ovaries on incubation with testosterone (T) in vitro at 1600 h of the same day or the next day synthesized significantly lower amounts of estradiol, compared to corresponding control ovaries. Although testosterone itself, in the absence of endogenous FSH, could stimulate estrogen synthesis to some extent, FSH had to be supplemented with T to restore estrogen synthesis to the level seen in control ovaries incubated with T. Lack of FSH thus appeared to affect the aromatization step in the estrogen biosynthetic pathway in the ovary of hamster on diestrus-2. In contrast to this, FSH antiserum given on the morning of proestrus had no effect on the in vivo and in vitro synthesis of estrogen, when examined 6--7 h later. The results suggest that there could be a difference in the need for FSH at different times of the cycle. Neutralization of LH either on diestrus-2 or proestrus resulted in a drastic reduction in estradiol concentration of the ovary. This block was at the level of androgen synthesis, since supplementing testerone alone in vitro could stimulate estrogen synthesis to a more or less similar extent as in the ovaries of control hamsters.The effect of neutralizing endogenous follicle stimulating hormone (FSH) or luteinizing hormone (LH) with specific antisera on the in vivo and in vitro synthesis of estrogen in the ovary of cycling hamster was studied. Neutralization of FSH or LH on proestrus resulted in a reduction in the estradiol concentration of the ovary on diestrus-2 and next proestrus, suggesting an impairment in follicular development. Injection of FSH antiserum at 0900 h of diestrus-2 significantly reduced the ovarian estradiol concentration within 6--7 h. Further, these ovaries on incubation with testosterone (T) in vitro at 1600 h of the same day or the next day synthesized significantly lower amounts of estradiol, compared to corresponding control ovaries. Although testosterone itself, in the absence of endogenous FSH, could stimulate estrogen synthesis to some extent, FSH had to be supplemented with T to restore estrogen synthesis to the level seen in control ovaries incubated with T. Lack of FSH thus appeared to affect the aromatization step in the estrogen biosynthetic pathway in the ovary of hamster on diestrus-2. In contrast to this, FSH antiserum given on the morning of proestrus had no effect on the in vivo and in vitro synthesis of estrogen, when examined 6--7 h later. The results suggest that there could be a difference in the need for FSH at different times of the cycle. Neutralization of LH either on diestrus-2 or proestrus resulted in a drastic reduction in estradiol concentration of the ovary. This block was at the level of androgen synthesis, since supplementing testerone alone in vitro could stimulate estrogen synthesis to a more or less similar extent as in the ovaries of control hamsters.
Journal of Pharmacology and Experimental Therapeutics | 2016
Alexandra E. Soto-Piña; Cynthia Franklin; C. S. Sheela Rani; Helmut B. Gottlieb; Carmen Hinojosa-Laborde; Randy Strong
Our objective was to study hypertension induced by chronic administration of synthetic glucocorticoid, dexamethasone (DEX), under nonstressful conditions and examine the role of catecholamine biosynthesis. To achieve this, we did the following: 1) used radiotelemetry to record mean arterial pressure (MAP) and heart rate (HR) in freely moving rats, and 2) administered different doses of DEX in drinking water. To evaluate the involvement of tyrosine hydroxylase (TH), the rate-limiting step in catecholamine biosynthesis, we treated rats with the TH inhibitor, α-methyl-para-tyrosine (α-MPT), for 3 days prior to administration of DEX and assessed TH mRNA and protein expression by quantitative real-time polymerase chain reaction and Western blot in the adrenal medulla. We observed a dose-dependent elevation in blood pressure with a DEX dose of 0.3 mg/kg administered for 10 days, significantly increasing MAP by +15.0 ± 1.1 mm Hg, while concomitantly reducing HR. Although this DEX treatment also significantly decreased body weight, pair-fed animals that showed similar decreases in body weight due to lowered food intake were not hypertensive, suggesting that body weight changes may not account for DEX-induced hypertension. Chronic DEX treatment significantly increased the TH mRNA and protein levels in the adrenal medulla, and α-MPT administration not only reduced DEX pressor effects, but also inhibited TH (serine40) phosphorylation. Our study thus validates a novel model to study hypertension induced by chronic intake of DEX in freely moving rats not subject to the confounding factors of previous models and establishes its dependence on concomitant activation of peripheral catecholamine biosynthesis.
Collaboration
Dive into the C. S. Sheela Rani's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs