C. Salomon
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Salomon.
Science | 2002
L. Khaykovich; Florian Schreck; Gabriele Ferrari; Thomas Bourdel; J. Cubizolles; Lincoln D. Carr; Yvan Castin; C. Salomon
We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.
Physical Review Letters | 2004
Thomas Bourdel; Lev Khaykovich; J. Cubizolles; Jing Zhang; F Chevy; M Teichmann; L Tarruell; Sjjmf Servaas Kokkelmans; C. Salomon
We report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of 170(+100)(-60) nm at 770 G, in good agreement with theory. We study the 2D expansion of the cloud and show deviation from hydrodynamic behavior in the BEC-BCS crossover region.
Physical Review Letters | 2003
J. Cubizolles; Thomas Bourdel; Sjjmf Servaas Kokkelmans; G. V. Shlyapnikov; C. Salomon
We create weakly-bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings.
Physical Review Letters | 2003
Thomas Bourdel; J. Cubizolles; L Khaykovich; Kmf Magalhaes; Sjjmf Servaas Kokkelmans; G. V. Shlyapnikov; C. Salomon
We investigate the strongly interacting regime in an optically trapped 6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift (80 G) between the resonance peak and both the maximum of atom loss and the change of sign of the interaction energy.
EPL | 1991
A. Clairon; C. Salomon; S Guellati; William D. Phillips
We report a realization of Zachariass 1953 proposal for observing a Ramsey resonance in an atomic fountain. Launched upward from a moving optical molasses where they have been cooled to ~ 5 ?K, cesium atoms pass once through a microwave cavity, continue to the summit of their trajectory, then fall again through the same cavity, completing the separated-fields interaction. The atoms spend 0.25 s in free flight above the cavity. Linewidth (2 Hz) and S/N imply a stability of 3?10-12 ?-1/2, at least as good as in existing Cs clocks, with eventual expected improvements of 102.
Journal of Physics B | 2005
S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grunert; C. Vian; F. Pereira Dos Santos; P. Rosenbusch; P. Lemonde; G. Santarelli; Peter Wolf; A. Clairon; Andre Luiten; Michael E. Tobar; C. Salomon
This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133Cs and 87Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6 × 10−14 τ−1/2 where τ is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2 × 10−16 at 50 000 s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7 × 10−16, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using 87Rb and 133Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.
EPL | 1990
C. Salomon; Jean Dalibard; William D. Phillips; A. Clairon; S Guellati
We have measured the temperature of cesium atoms released from optical molasses. For a wide range of laser intensity and detuning from resonance, the temperature depends only on the intensity-to-detuning ratio. The lowest temperature achieved is (2.5 ± 0.6) μK, which corresponds to an r.m.s. velocity of 12.5 mm/s or 3.6 times the single-photon recoil velocity. This is, to our knowledge, the coldest kinetic temperature ever measured for three-dimensional (3D) cooling.
Experimental Astronomy | 2009
Peter Wolf; Ch. J. Bordé; A. Clairon; Loic Duchayne; Arnaud Landragin; P. Lemonde; G. Santarelli; W. Ertmer; Ernst M. Rasel; F. S. Cataliotti; M. Inguscio; G. M. Tino; P. Gill; H. A. Klein; Serge Reynaud; C. Salomon; E. Peik; Orfeu Bertolami; P. J. S. Gil; Jorge Páramos; C. Jentsch; Ulrich Johann; A. Rathke; Philippe Bouyer; L. Cacciapuoti; D. Izzo; P. De Natale; Bruno Christophe; Pierre Touboul; Slava G. Turyshev
We summarise the scientific and technological aspects of the Search for Anomalous Gravitation using Atomic Sensors (SAGAS) project, submitted to ESA in June 2007 in response to the Cosmic Vision 2015–2025 call for proposals. The proposed mission aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a Solar System escape trajectory in the 2020 to 2030 time-frame. SAGAS has numerous science objectives in fundamental physics and Solar System science, for example numerous tests of general relativity and the exploration of the Kuiper belt. The combination of highly sensitive atomic sensors and of the laser link well adapted for large distances will allow measurements with unprecedented accuracy and on scales never reached before. We present the proposed mission in some detail, with particular emphasis on the science goals and associated measurements and technologies.
Physical Review A | 2005
D. S. Petrov; C. Salomon; G. V. Shlyapnikov
We consider weakly bound diatomic molecules sdimersd formed in a two-component atomic Fermi gas with a large positive scattering length for the interspecies interaction. We develop a theoretical approach for calculating atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic collisional relaxation of the molecules into deep bound states. This approach is based on the single-channel zero-range approximation, and we find that it is applicable in the vicinity of a wide two-body Feshbach resonance. Our results draw prospects for various interesting manipulations of weakly bound dimers of fermionic atoms.
conference on precision electromagnetic measurements | 2004
H. Marion; F.P. dos Santos; D. Chambon; F. Narbonneau; M. Abgrall; I. Maksimovic; L. Cacciapuotti; C. Vian; J. Grunert; P. Rosenbusch; S. Bize; G. Santarelli; Ph. Laurent; A. Clairon; Michael E. Tobar; Andre Luiten; C. Salomon
This paper describes several recent improvements of the BNM-SYRTE fountain ensemble. A new method for controlling the cold collision shift with improved accuracy has been proposed and demonstrated. A thorough investigation of some cold collision properties of 133Cs is presented, including the observation of molecular Feshbach resonances. Finally, a new microwave synthesis scheme based on a fully operational cryogenic oscillator is presented. With this, a fractional frequency instability below 2 times 10-14tau-frac12 is obtained routinely