C. Sauty
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Sauty.
Monthly Notices of the Royal Astronomical Society | 2000
Nektarios Vlahakis; K. Tsinganos; C. Sauty; E. Trussoni
The classical Blandford & Payne model for the magneto-centrifugal acceleration and collimation of a disc-wind is revisited and refined. In the original model, the gas is cold and the solution is everywhere subfast magnetosonic. In the present model the plasma has a finite temperature and the self-consistent solution of the MHD equations starts with a subslow magnetosonic speed which subsequently crosses all critical points, at the slow magnetosonic, Alfven and fast magnetosonic separatrix surfaces. The superfast magnetosonic solution thus satisfies MHD causality. Downstream of the fast magnetosonic critical point the poloidal streamlines overfocus towards the axis and the solution is terminated. The validity of the model to disc winds associated with young stellar objects is briefly discussed.
Astronomy and Astrophysics | 2006
Z. Meliani; F. Casse; C. Sauty
Context. We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar magnetospheric winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. Aims. These innovative MHD simulations are devoted to the study of the interplay between a stellar wind (having different ejection mass rates) and an MHD disc-driven jet embedding the stellar wind. Methods. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. We first investigate the various angular momentum transports occurring in the magneto-viscous accretion disc. We then analyze the modifications induced by the interaction between the two components of the outflow. Results. Our simulations show that the inner outflow is accelerated from the central object’s hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. Conclusions. The simulations show that the MHD disc-driven outflow extracts angular momentum more efficiently than do viscous effects in near-equipartition, thin-magnetized discs where turbulence is fully developed. We also show that, when a dense inner stellar wind occurs, the resulting disc-driven jet has a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass-ejection rate in the disc-driven jet and a larger radial extension that is in better agreement with the observations, besides being more consistent.
Astronomy and Astrophysics | 2004
Z. Meliani; C. Sauty; K. Tsinganos; Nektarios Vlahakis
Spherically symmetric hydrodynamical outflows accelerated thermally in the vicinity of a compact object are studied by generalizing an equation of state with a variable effective polytropic index, appropriate to describe relativistic temperatures close to the central object and nonrelativistic ones further away. Relativistic effects introduced by the Schwarzschild metric and the presence of relativistic temperatures in the corona are compared with previous results for a constant effective polytropic index and also with results of the classical wind theory. By a parametric study of the polytropic index and the location of the sonic transition it is found that space time curvature and relativistic temperatures tend to increase the efficiency of thermal driving in accelerating the outflow. Thus conversely to the classical Parker wind, the outflow is accelerated even for polytropic indices higher than 3/2. The results of this simple but fully relativistic extension of the polytropic equation of state may be useful in simulations of outflows from hot coronae in black hole magnetospheres.
Astronomy and Astrophysics | 2002
C. Sauty; E. Trussoni; K. Tsinganos
An exact model for magnetized and rotating outflows, underpressured at their axis, is analysed by means of a nonlinear separation of the variables in the two-dimensional governing magnetohydrodynamic (MHD) equations for axisymmetric plasmas. The outflow starts subsonically and subAlfvenically from the central gravitating source and its surrounding accretion disk and after crossing the MHD critical points, high values of the Alfven Mach number may be reached. Three broad types of solutions are found: (a) collimated jet-type outflows from efficient magnetic rotators where the outflow is confined by the magnetic hoop stress; (b) collimated outflows from inefficient magnetic rotators where the outflow is cylindrically confined by thermal pressure gradients; and (c) radially expanding wind-type outflows analogous to the solar wind. In most of the cases examined cylindrically collimated (jet-type) outflows are naturally emerging with thermal and magnetic effects competing in the acceleration and the confinement of the jet. The interplay of all MHD volumetric forces in accelerating and confining the jet is displayed along all its length and for several parameters. The solutions may be used for a physical understanding of astrophysical outflows, such as those associated with young stellar objects, planetary nebulae, extragalactic jets, etc.
Astronomy and Astrophysics | 2006
Z. Meliani; C. Sauty; Nektarios Vlahakis; K. Tsinganos; E. Trussoni
Steady axisymmetric outflows originating at the hot coronal magnetosphere of a Schwarzschild black hole and surrounding accretion disk are studied in the framework of general relativistic magnetohydrodynamics (GRMHD). The assumption of meridional self-similarity is adopted for the construction of semi-analytical solutions of the GRMHD equations describing outflows close to the polar axis. In addition, it is assumed that relativistic effects related to the rotation of the black hole and the plasma are negligible compared to the gravitational and other energetic terms. The constructed model allows us to extend previous MHD studies for coronal winds from young stars to spine jets from Active Galactic Nuclei surrounded by disk-driven outflows. The outflows are thermally driven and magnetically or thermally collimated. The collimation depends critically on an energetic integral measuring the efficiency of the magnetic rotator, similarly to the non relativistic case. It is also shown that relativistic effects quantitatively affect the depth of the gravitational well and the coronal temperature distribution in the launching region of the outflow. Similarly to previous analytical and numerical studies, relativistic effects tend to increase the efficiency of the thermal driving but reduce the effect of magnetic self-collimation.
Astronomy and Astrophysics | 2009
Titos Matsakos; S. Massaglia; E. Trussoni; K. Tsinganos; Nektarios Vlahakis; C. Sauty; A. Mignone
Context. Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. Each component’s contribution depends on the intrinsic physical properties of the YSO-disk system and its evolutionary stage. Aims. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the two jet components over a parameter space and when time variability is enforced. Methods. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes and the potential steady state reached. Results. The co-evolution of the two components, indeed, results in final steady state configurations with the disk wind effectively collimating the inner stellar component. The final outcome stays close to the initial solutions, supporting the validity of the analytical studies. Moreover, a weak shock forms, disconnecting the launching region of both outflows with the propagation domain of the twocomponent jet. On the other hand, several cases are being investigated to identify the role of each two-component jet parameter. Time variability is not found to considerably affect the dynamics, thus making all the conclusions robust. However, the flow fluctuations generate shocks, whose large scale structures have a strong resemblance to observed YSO jet knots. Conclusions. Analytical disk and stellar solutions, even sub modified fast ones, provide a solid foundation to construct twocomponent jet models. Tuning their physical properties along with the two-component jet parameters allows a broad class of realistic scenarios to be addressed. The applied flow variability provides very promising perspectives for the comparison of the models with observations.
Astronomy and Astrophysics | 2004
C. Sauty; E. Trussoni; K. Tsinganos
By means of a nonlinear separation of the variables in the governing full set of the magnetohydrodynamic (MHD) equations for axisymmetric plasmas we analyse an exact model for magnetized and rotating outflows that are hotter and overpressured at their axis. These outflows start subsonically and subAlfvenically from the central gravitating source and its surrounding accretion disk. Subsequently, they accelerate thermally and magnetocentrifugally and thus cross the appropriate MHD critical points, reaching high values of the Alfven Mach number. Three types of solutions are found: (a) collimated jet- type outflows from efficient magnetic rotators with the flow confined by the magnetic hoop stress; (b) radially expanding wind- type outflows analogous to the solar wind, from inefficient magnetic rotators or strongly overpressured sources; (c) terminated solutions with increasing amplitude of oscillations in the width of the beam. In contrast to previously studied underpressured outflows, the transition from collimated jets to uncollimated winds is not continuous in the appropriate parametric space with a gap where no stationary solution is found. Superfast at infinity solutions are filtered by three critical surfaces corresponding to the three known limiting characteristics or separatrices of MHD wind theory. Collimated and terminated solutions cross the slow, Alfven and fast magneto-acoustic critical points. Radially expanding solutions cross the slow and Alfven critical points while the last boundary condition is imposed by requiring that the pressure vanishes at infinity.
Astronomy and Astrophysics | 2010
Zakaria Meliani; C. Sauty; K. Tsinganos; E. Trussoni; V. Cayatte
Context. The two types of Fanaroff-Riley (FR) radio-loud galaxies, FR I and FR II, exhibit strong jets which have different properties. These differences may be associated to the central engine and/or the external medium. Aims. The AGN classification FR I and FR II can be linked to the rate of electromagnetic Poynting flux extraction from the inner corona of the central engine by the jet. The collimation results from the distribution of the total electromagnetic energy across the jet, as compared to the corresponding distribution of the thermal and gravitational energies. Methods. We use exact solutions of the fully relativistic magnetohydrodynamical (GRMHD) equations obtained by a nonlinear separation of the variables to study outflows from a Schwarzschild black hole corona. Results. A strong correlation is found between the jet features and the energetic distribution of the plasma of the inner corona, which may be related to the efficiency of the magnetic rotator. Conclusions. It is shown that observations of FR I and FR II jets may be partially constrained by our model for spine jets. The deceleration observed in FR I jets may be associated with a low magnetic efficiency of the central magnetic rotator and an important thermal confinement by the hot surrounding medium. Conversely, the strongly collimated and accelerated FR II outflows may be self-collimated by their own magnetic field because of the high efficiency of the central magnetic rotator.
Archive | 2002
C. Sauty; K. Tsinganos; E. Trussoni
We briefly review our current understanding for the formation, acceleration and collimation of winds to jets associated with compact astrophysical objects such as AGN and μQuasars.
Astronomy and Astrophysics | 2005
C. Sauty; J. J. G. Lima; N. Iro; K. Tsinganos
Exact axisymmetric analytical solutions of the governing MHD equations for magnetized and rotating outflows are applied to the solar wind during solar minimum as observed by ULYSSES. Using the spacecraft data, the latitudinal dependences of physical quantities such as the density, velocity, magnetic field and temperature are analytically described. The self-similar solutions are then compared to the global structure of the wind from one solar radius to 5 AU and beyond, including consistently the rotation of the outflow. The model makes it possible to describe the initial flaring of the magnetic dipolar structure, repro- ducing in a satisfactory way the observed profiles of the velocity, density and temperature with heliocentric distance. Finally, this model is in agreement with the conjecture that the solar wind should not be collimated at large distances, even close to its rotational axis.