Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Schreiber is active.

Publication


Featured researches published by C. Schreiber.


Astronomy and Astrophysics | 2015

The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day

C. Schreiber; M. Pannella; D. Elbaz; M. Béthermin; Hanae Inami; Mark Dickinson; B. Magnelli; Tao Wang; H. Aussel; Emanuele Daddi; S. Juneau; Xinwen Shu; M. Sargent; V. Buat; Sandra M. Faber; Henry C. Ferguson; Mauro Giavalisco; Anton M. Koekemoer; G. Magdis; G. Morrison; Casey Papovich; P. Santini; Douglas Scott

We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 star-forming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based Ks band-selected catalogs in the GOODS–North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called “scatter stacking”, which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M∗) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the logu200910(SFR)–logu200910(M∗) relation, with evidence for a flattening of the main sequence at high masses (logu200910(M∗/M⊙) > 10.5) that becomesless prominent with increasing redshift and almost vanishes by z ≃ 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M∗) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the “main sequence” mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.


The Astrophysical Journal | 2015

GOODS-HERSCHEL: star formation, dust attenuation and the FIR-radio correlation on the Main Sequence of star-forming galaxies up to z~4

M. Pannella; D. Elbaz; E. Daddi; M. Dickinson; Ho Seong Hwang; C. Schreiber; V. Strazzullo; H. Aussel; M. Béthermin; V. Buat; V. Charmandaris; A. Cibinel; S. Juneau; R. J. Ivison; D. Le Borgne; E. Le Floc'h; R. Leiton; Lihwai Lin; G. Magdis; G. Morrison; J. R. Mullaney; M. Onodera; A. Renzini; Samir Salim; M. Sargent; D. Scott; Xinwen Shu; Tao Wang

We use the deep panchromatic dataset available in the GOODS-N field, spanning all the way from GALEX ultra-violet to VLA radio continuum data, to select a star-forming galaxy sample at z~[0.5-4] and robustly measure galaxy photometric redshifts, star formation rates, stellar masses and UV rest-frame properties. We quantitatively explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation properties of star-forming galaxies up to z~4. Our main results can be summarized as follows: i) we find that the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while the normalization keeps increasing to the highest redshift, z~4, we are able to explore; ii) for the first time in this work, we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated; iv) strikingly, we find that this attenuation relation evolves very weakly with redshift, the amount of dust attenuation increasing by less than 0.3 magnitudes over the redshift range [0.5-4] for a fixed stellar mass, as opposed to a tenfold increase of star formation rate; v) this finding explains the evolution of the SFR-Auv relation reported in literature: the same amount of star formation is less attenuated at higher redshift because it is hosted in less massive, and less metal rich, galaxies; vi) the correlation between dust attenuation and the UV spectral slope evolves in redshift, with the median UV spectral slope of star-forming galaxies becoming bluer with redshift. By z~3, typical UV slopes are inconsistent, given the measured dust attenuation, with the predictions of commonly used empirical laws: this means that the present cosmic star formation rate density nestimates at redshift z > 3 need to be increased by a factor of around 2. Finally, building on the measured AUV–logM correlation and on existing results, we find evidence that line reddening is marginally larger (by a factor of around 1.3) than continuum reddening at all redshifts probed, and also that the amount of dust attenuation at a fixed ISM metallicity increases with redshift. We speculate that our results point toward an evolution of the ISM conditions of the median star-forming galaxy, such that at z >1.5, Main Sequence galaxies have ISM properties more similar to those found in local starbursts.


The Astrophysical Journal | 2016

The SFR-M* Relation and Empirical Star-Formation Histories from ZFOURGE at 0.5 < z < 4

Adam R. Tomczak; Ryan F. Quadri; Kim-Vy H. Tran; Ivo Labbé; Caroline M. S. Straatman; Casey Papovich; Karl Glazebrook; Rebecca J. Allen; Gabreil B. Brammer; Michael Cowley; Mark Dickinson; D. Elbaz; Hanae Inami; Glenn G. Kacprzak; G. Morrison; Themiya Nanayakkara; S. Eric Persson; Glen Rees; Brett Salmon; C. Schreiber; Lee R. Spitler; Katherine E. Whitaker

We explore star-formation histories (SFHs) of galaxies based on the evolution of the star-formation rate stellar mass relation (SFR-M*). Using data from the FourStar Galaxy Evolution Survey (ZFOURGE) in combination with far-IR imaging from the Spitzer and Herschel observatories we measure the SFR-M* relation at 0.5 < z < 4. Similar to recent works we find that the average infrared SEDs of galaxies are roughly consistent with a single infrared template across a broad range of redshifts and stellar masses, with evidence for only weak deviations. We find that the SFR-M* relation is not consistent with a single power-law of the form SFR ~ M*^a at any redshift; it has a power-law slope of a~1 at low masses, and becomes shallower above a turnover mass (M_0) that ranges from 10^9.5 - 10^10.8 Msol, with evidence that M_0 increases with redshift. We compare our measurements to results from state-of-the-art cosmological simulations, and find general agreement in the slope of the SFR-M* relation albeit with systematic offsets. We use the evolving SFR-M* sequence to generate SFHs, finding that typical SFRs of individual galaxies rise at early times and decline after reaching a peak. This peak occurs earlier for more massive galaxies. We integrate these SFHs to generate mass-growth histories and compare to the implied mass-growth from the evolution of the stellar mass function. We find that these two estimates are in broad qualitative agreement, but that there is room for improvement at a more detailed level. At early times the SFHs suggest mass-growth rates that are as much as 10x higher than inferred from the stellar mass function. However, at later times the SFHs under-predict the inferred evolution, as is expected in the case of additional growth due to mergers.


Astronomy and Astrophysics | 2015

Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation

M. Béthermin; Emanuele Daddi; G. Magdis; Claudia del P. Lagos; M. Sargent; M. Albrecht; H. Aussel; Frank Bertoldi; V. Buat; M. Galametz; S. Heinis; O. Ilbert; A. Karim; Anton M. Koekemoer; Cedric G. Lacey; Emeric Le Floc'h; Felipe Navarrete; M. Pannella; C. Schreiber; Vernesa Smolčić; M. Symeonidis; M. Viero

We aim to measure the average dust and molecular gas content of massive star-forming galaxies (>3 × 1010M⊙) up to z = 4 in the COSMOS field to determine if the intense star formation observed at high redshift is induced by major mergers or is caused by large gas reservoirs. Firstly, we measured the evolution of the average spectral energy distributions as a function of redshift using a stacking analysis of Spitzer, Herschel, LABOCA, and AzTEC data for two samples of galaxies: normal star-forming objects and strong starbursts, as defined by their distance to the main sequence. We found that the mean intensity of the radiation field ⟨ U ⟩ heating the dust (strongly correlated with dust temperature) increases with increasing redshift up to z = 4 in main-sequence galaxies. We can reproduce this evolution with simple models that account for the decrease in the gas metallicity with redshift. No evolution of ⟨ U ⟩ with redshift is found in strong starbursts. We then deduced the evolution of the molecular gas fraction (defined here as Mmol/ (Mmol + M⋆)) with redshift and found a similar, steeply increasing trend for both samples. At z ~ 4, this fraction reaches ~60%. The average position of the main-sequence galaxies is on the locus of the local, normal star-forming disks in the integrated Schmidt-Kennicutt diagram (star formation rate versus mass of molecular gas), suggesting that the bulk of the star formation up to z = 4 is dominated by secular processes.


Astronomy and Astrophysics | 2015

T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

E. Merlin; A. Fontana; Henry C. Ferguson; James Dunlop; D. Elbaz; N. Bourne; Victoria Bruce; Fernando Buitrago; M. Castellano; C. Schreiber; A. Grazian; Ross J. McLure; K. Okumura; Xinwen Shu; Tao Wang; R. Amorin; K. Boutsia; N. Cappelluti; A. Comastri; S. Derriere; S. M. Faber; P. Santini

Context. The advent of deep multiwavelength extragalactic surveys has led to the necessity for advanced and fast methods for photometric analysis. In fact, codes which allow analyses of the same regions of the sky observed at different wavelengths and resolutions are becoming essential to thoroughly exploit current and future data. In this context, a key issue is the confusion (i.e. blending) of sources in low-resolution images.Aims. We present t-phot, a publicly available software package developed within the astrodeep project. t-phot is aimed at extracting accurate photometry from low-resolution images, where the blending of sources can be a serious problem for the accurate and unbiased measurement of fluxes and colours.Methods. t-phot can be considered as the next generation to tfit, providing significant improvements over and above it and other similar codes (e.g. convphot). t-phot gathers data from a high-resolution image of a region of the sky, and uses this information (source positions and morphologies) to obtain priors for the photometric analysis of the lower resolution image of the same field. t-phot can handle different types of datasets as input priors, namely i) a list of objects that will be used to obtain cutouts from the real high-resolution image; ii) a set of analytical models (as .fits stamps); iii) a list of unresolved, point-like sources, useful for example for far-infrared (FIR) wavelength domains.Results. By means of simulations and analysis of real datasets, we show that t-phot yields accurate estimations of fluxes within the intrinsic uncertainties of the method, when systematic errors are taken into account (which can be done thanks to a flagging code given in the output). t-phot is many times faster than similar codes like tfit and convphot (up to hundreds, depending on the problem and the method adopted), whilst at the same time being more robust and more versatile. This makes it an excellent choice for the analysis of large datasets. When used with the same parameter sets as for tfit it yields almost identical results (although in a much shorter time); in addition we show how the use of different settings and methods significantly enhances the performance.Conclusions. t-phot proves to be a state-of-the-art tool for multiwavelength optical to far-infrared image photometry. Given its versatility and robustness, t-phot can be considered the preferred choice for combined photometric analysis of current and forthcoming extragalactic imaging surveys.


Monthly Notices of the Royal Astronomical Society | 2015

ALMA and Herschel reveal that X-ray-selected AGN and main-sequence galaxies have different star formation rate distributions

J. R. Mullaney; D. M. Alexander; James Aird; E. Bernhard; E. Daddi; A. Del Moro; M. Dickinson; D. Elbaz; C. M. Harrison; S. Juneau; D. Liu; M. Pannella; D. Rosario; P. Santini; M. Sargent; C. Schreiber; J. M. Simpson; F. Stanley

Using deep Herschel and ALMA observations, we investigate the star formation rate (SFR) distributions of X-ray-selected active galactic nucleus (AGN) host galaxies at 0.5 < z < 1.5 and 1.5 < z < 4, comparing them to that of normal, star-forming (i.e. `main-sequence, or MS) galaxies. We find that 34-55 per cent of AGNs in our sample have SFRs at least a factor of 2 below that of the average MS galaxy, compared to ≈15 per cent of all MS galaxies, suggesting significantly different SFR distributions. Indeed, when both are modelled as lognormal distributions, the mass and redshift-normalized SFR distributions of X-ray AGNs are roughly twice as broad, and peak ≈0.4 dex lower, than that of MS galaxies. However, like MS galaxies, the normalized SFR distribution of AGNs in our sample appears not to evolve with redshift. Despite X-ray AGNs and MS galaxies having different SFR distributions, the linear-mean SFR of AGNs derived from our distributions is remarkably consistent with that of MS galaxies, and thus with previous results derived from stacked Herschel data. This apparent contradiction is due to the linear-mean SFR being biased by bright outliers, and thus does not necessarily represent a true characterization of the typical SFR of X-ray AGNs.


Astronomy and Astrophysics | 2016

The ASTRODEEP Frontier Fields catalogues - II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416

M. Castellano; R. Amorin; E. Merlin; A. Fontana; Ross J. McLure; E. Mármol-Queraltó; Alice Mortlock; S. Parsa; James Dunlop; D. Elbaz; I. Balestra; A. Boucaud; N. Bourne; K. Boutsia; Gabriel B. Brammer; Victoria Bruce; Fernando Buitrago; P. Capak; N. Cappelluti; L. Ciesla; A. Comastri; F. Cullen; S. Derriere; S. M. Faber; E. Giallongo; A. Grazian; C. Grillo; A. Mercurio; M. J. Michałowski; M. Nonino

Aims. We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. n nMethods. We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. n nResults. We show that photometric redshifts reach a remarkable ~3–5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32−33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5–1.5 dex lower masses with respect to extragalactic wide fields, including sources at M_(star) ~ 10^7–10^8 M_⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1–1 M_⊙/yr at z ~ 6–10.


The Astrophysical Journal | 2016

Chandra Counterparts of CANDELS GOODS-S Sources

N. Cappelluti; A. Comastri; A. Fontana; G. Zamorani; R. Amorin; M. Castellano; E. Merlin; P. Santini; D. Elbaz; C. Schreiber; Xinwen Shu; Tao Wang; James Dunlop; N. Bourne; Vicki Bruce; Fernando Buitrago; M. J. Michałowski; S. Derriere; Henry C. Ferguson; S. M. Faber; F. Vito

Improving the capabilities of detecting faint X-ray sources is fundamental to increase the statistics on faint high-z AGN and star-forming galaxies. We performed a simultaneous Maximum Likelihood PSF fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms{em Chandra} Deep Field South (CDFS) data at the position of the 34930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a raytracing simulation. We detected a total of 698 X-ray point-sources with a likelihood


Astronomy and Astrophysics | 2016

The imprint of rapid star formation quenching on the spectral energy distributions of galaxies

L. Ciesla; A. Boselli; D. Elbaz; S. Boissier; V. Buat; V. Charmandaris; C. Schreiber; M. Béthermin; M. Baes; M. Boquien; I. De Looze; J. A. Fernández-Ontiveros; C. Pappalardo; L. Spinoglio; S. Viaene

mathcal{L}


Astronomy and Astrophysics | 2015

GOODS-Herschel: identification of the individual galaxies responsible for the 80–290 μm cosmic infrared background

R. Leiton; D. Elbaz; K. Okumura; Ho Seong Hwang; G. Magdis; B. Magnelli; I. Valtchanov; M. Dickinson; M. Béthermin; C. Schreiber; V. Charmandaris; H. Dole; S. Juneau; D. Le Borgne; M. Pannella; Alexandra Pope; P. Popesso

Collaboration


Dive into the C. Schreiber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Béthermin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

R. Amorin

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Henry C. Ferguson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Xinwen Shu

Anhui Normal University

View shared research outputs
Top Co-Authors

Avatar

James Dunlop

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge