Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Sheehy is active.

Publication


Featured researches published by C. Sheehy.


Physical Review Letters | 2014

Detection of

Peter A. R. Ade; R. W. Aikin; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; Matthew Hasselfield; S. R. Hildebrandt; G. C. Hilton; V. V. Hristov; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; E. M. Leitch; M. Lueker; P. Mason; C. B. Netterfield

We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.


Physical Review Letters | 2016

B

Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; G. C. Hilton; H. Hui; K. D. Irwin; K. S. Karkare; E. Karpel; J. P. Kaufman; Brian Keating; S. Kefeli

We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.Keck Array and BICEP2 Collaborations: P. A. R. Ade, Z. Ahmed, 3 R. W. Aikin, K. D. Alexander, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, 7 R. Bowens-Rubin, J. A. Brevik, I. Buder, E. Bullock, V. Buza, 9 J. Connors, B. P. Crill, L. Duband, C. Dvorkin, J. P. Filippini, 11 S. Fliescher, J. Grayson, M. Halpern, S. Harrison, G. C. Hilton, H. Hui, K. D. Irwin, 2, 14 K. S. Karkare, E. Karpel, J. P. Kaufman, B. G. Keating, S. Kefeli, S. A. Kernasovskiy, J. M. Kovac, 9, ∗ C. L. Kuo, 2 E. M. Leitch, M. Lueker, K. G. Megerian, C. B. Netterfield, 17 H. T. Nguyen, R. O’Brient, 7 R. W. Ogburn IV, 2 A. Orlando, 15 C. Pryke, 8, † S. Richter, R. Schwarz, C. D. Sheehy, 16 Z. K. Staniszewski, 7 B. Steinbach, R. V. Sudiwala, G. P. Teply, 15 K. L. Thompson, 2 J. E. Tolan, C. Tucker, A. D. Turner, A. G. Vieregg, 18, 16 A. C. Weber, D. V. Wiebe, J. Willmert, C. L. Wong, 9 W. L. K. Wu, and K. W. Yoon 2 School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA Department of Physics, Stanford University, Stanford, California 94305, USA Department of Physics, California Institute of Technology, Pasadena, California 91125, USA Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, USA Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada Jet Propulsion Laboratory, Pasadena, California 91109, USA Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics, Harvard University, Cambridge, MA 02138, USA Service des Basses Températures, Commissariat à l’Energie Atomique, 38054 Grenoble, France Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada National Institute of Standards and Technology, Boulder, Colorado 80305, USA Department of Physics, University of California at San Diego, La Jolla, California 92093, USA Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada Department of Physics, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA (Published in PRL 20 January 2016)


The Astrophysical Journal | 2010

-Mode Polarization at Degree Angular Scales by BICEP2

H. C. Chiang; Peter A. R. Ade; D. Barkats; J. Battle; E. M. Bierman; J. J. Bock; C. D. Dowell; L. Duband; E. Hivon; W. L. Holzapfel; V. V. Hristov; W. C. Jones; Brian Keating; J. M. Kovac; C. L. Kuo; A. E. Lange; Erik M. Leitch; P. V. Mason; T. Matsumura; H. T. Nguyen; N. Ponthieu; C. Pryke; S. Richter; G. Rocha; C. Sheehy; Y. D. Takahashi; J. E. Tolan; K. W. Yoon

Background Imaging of Cosmic Extragalactic Polarization (BICEP) is a bolometric polarimeter designed to measure the inflationary B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. During three seasons of observing at the South Pole (2006 through 2008), BICEP mapped ~2% of the sky chosen to be uniquely clean of polarized foreground emission. Here, we present initial results derived from a subset of the data acquired during the first two years. We present maps of temperature, Stokes Q and U, E and B modes, and associated angular power spectra. We demonstrate that the polarization data are self-consistent by performing a series of jackknife tests. We study potential systematic errors in detail and show that they are sub-dominant to the statistical errors. We measure the E-mode angular power spectrum with high precision at 21 ≤ l ≤ 335, detecting for the first time the peak expected at l ~ 140. The measured E-mode spectrum is consistent with expectations from a ΛCDM model, and the B-mode spectrum is consistent with zero. The tensor-to-scalar ratio derived from the B-mode spectrum is r = 0.02^(+0.31)_(–0.26), or r < 0.72 at 95% confidence, the first meaningful constraint on the inflationary gravitational wave background to come directly from CMB B-mode polarization.


The Astrophysical Journal | 2014

Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band

Denis Barkats; R. W. Aikin; C. A. Bischoff; I. Buder; J. P. Kaufman; Brian Keating; J. M. Kovac; Meng Su; Peter A. R. Ade; J. Battle; E. M. Bierman; J. J. Bock; H. C. Chiang; C. D. Dowell; L. Duband; J. P. Filippini; E. Hivon; W. L. Holzapfel; V. V. Hristov; W. C. Jones; C. L. Kuo; E. M. Leitch; P. Mason; T. Matsumura; H. T. Nguyen; N. Ponthieu; C. Pryke; S. Richter; G. Rocha; C. Sheehy

BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the Cosmic Microwave Background (CMB) at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006 to 2008). This work extends the two-year result published in Chiang et al. (2010), with additional data from the third season and relaxed detector-selection criteria. This analysis also int roduces a more comprehensive estimation of band-power window functions, improved likelihood estimation methods and a new technique for deprojecting monopole temperature-to-polarization leakage which reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. (2010). We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ l ≤ 335 and find that the EE spectrum is consistent with Lambda Cold Dark Matter (�CDM) cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r = 0.03 +0.27 -0.23, or r < 0.70 at 95% confidence level.


Physical Review D | 2014

Measurement of cosmic microwave background polarization power spectra from two years of BICEP data

J. P. Kaufman; N. J. Miller; M. Shimon; D. Barkats; C. A. Bischoff; I. Buder; Brian Keating; J. M. Kovac; Peter A. R. Ade; R. W. Aikin; J. Battle; E. M. Bierman; J. J. Bock; H. C. Chiang; C. D. Dowell; L. Duband; J. P. Filippini; E. Hivon; W. L. Holzapfel; V. V. Hristov; W. C. Jones; Sarah S. Kernasovskiy; C. L. Kuo; Erik M. Leitch; P. V. Mason; T. Matsumura; H. T. Nguyen; N. Ponthieu; C. Pryke; S. Richter

Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB’s temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that Bicep1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of α=−2.77°±0.86°(statistical)±1.3°(systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the Bicep1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy’s magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this “self-calibration” process, we find that the upper limit on the tensor-to-scalar ratio decreases slightly, from r<0.70 to r<0.65 at 95% confidence.


The Astrophysical Journal | 2011

DEGREE-SCALE COSMIC MICROWAVE BACKGROUND POLARIZATION MEASUREMENTS FROM THREE YEARS OF BICEP1 DATA

E. M. Bierman; T. Matsumura; C. D. Dowell; Brian Keating; Peter A. R. Ade; D. Barkats; D. Barron; J. Battle; J. J. Bock; H. C. Chiang; T. Culverhouse; L. Duband; E. Hivon; W. L. Holzapfel; V. V. Hristov; J. P. Kaufman; J. M. Kovac; C. L. Kuo; A. E. Lange; Erik M. Leitch; P. V. Mason; N. J. Miller; H. T. Nguyen; C. Pryke; S. Richter; G. Rocha; C. Sheehy; Y. D. Takahashi; K. W. Yoon

In order to study inflationary cosmology and the Milky Way Galaxys composition and magnetic field structure, Stokes I, Q, and U maps of the Galactic plane covering the Galactic longitude range 260° < l < 340° in three atmospheric transmission windows centered on 100, 150, and 220 GHz are presented. The maps sample an optical depth 1 ≾ AV ≾ 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. The polarization angles in all three bands are generally perpendicular to those measured by starlight polarimetry as expected and show changes in the structure of the Galactic magnetic field on the scale of 60°. The frequency spectrum of degree-scale Galactic emission is plotted between 23 and 220 GHz (including WMAP data) and is fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Polarized emission is detected over the entire region within two degrees of the Galactic plane, indicating the large-scale magnetic field is oriented parallel to the plane of the Galaxy. A trend of decreasing polarization fraction with increasing total intensity is observed, ruling out the simplest model of a constant Galactic magnetic field orientation along the line of sight in the Galactic plane. A generally increasing trend of polarization fraction with electromagnetic frequency is found, varying from 0.5%-1.5% at frequencies below 50 GHz to 2.5%-3.5% above 90 GHz. The effort to extend the capabilities of BICEP by installing 220 GHz band hardware is described along with analysis of the new band.


Proceedings of SPIE | 2010

Self-calibration of BICEP1 three-year data and constraints on astrophysical polarization rotation

J. A. Brevik; R. W. Aikin; M. Amiri; S. J. Benton; J. J. Bock; J. A. Bonetti; B. Burger; C. D. Dowell; L. Duband; J. P. Filippini; S. R. Golwala; M. Halpern; Matthew Hasselfield; G. Hilton; V. V. Hristov; K. D. Irwin; J. P. Kaufman; Brian Keating; J. M. Kovac; C. L. Kuo; A. E. Lange; E. M. Leitch; C. B. Netterfield; H. T. Nguyen; R. W. Ogburn; A. Orlando; C. Pryke; Carl D. Reintsema; S. Richter; J. E. Ruhl

We report on the preliminary detector performance of the Bicep2 mm-wave polarimeter, deployed in 2009 to the South Pole. Bicep2 is currently imaging the polarization of the cosmic microwave background at 150 GHz using an array of 512 antenna-coupled superconducting bolometers. The antennas, band-defining filters and transition edge sensor (TES) bolometers are photolithographically fabricated on 4 silicon tiles. Each tile consists of an 8×8 grid of ~7 mm spatial pixels, for a total of 256 detector pairs. A spatial pixel contains 2 sets of orthogonal antenna slots summed in-phase, with each set coupled to a TES by a filtered microstrip. The detectors are read out using time-domain multiplexed SQUIDs. The detector pair of each spatial pixel is differenced to measure polarization. We report on the performance of the Bicep2 detectors in the field, including the focal plane yield, detector and multiplexer optimization, detector noise and stability, and a preliminary estimate of the improvement in mapping speed compared to Bicep1.


Physical Review D | 2017

A Millimeter-wave Galactic Plane Survey with the BICEP Polarimeter

Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; T.St. Germaine; T. Ghosh; J. A. Grayson; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin; Ju-Hyung Kang; Kirit S. Karkare; E. Karpel

We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation, which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps (∼3  μK−arc min) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term g_(aγ) ≤ 7.2×10^(−2)/H_I (95% confidence) than the constraint derived from the B-mode spectrum, where H_I is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10^(−6) ≲ f_a/M_(pl) at mass range of 10^(−33) ≤ ma ≤ 10^(−28)  eV for r=0.01, assuming g_(aγ) ∼ α/(2πf_a) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.


arXiv: Instrumentation and Methods for Astrophysics | 2018

Initial performance of the BICEP2 antenna-coupled superconducting bolometers at the South Pole

Michael Crumrine; Peter A. R. Ade; Z. Ahmed; Randol Aikin; K. D. Alexander; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; James Cornelison; Bendan Crill; Marion Dierickx; L. Duband; Cora Dvorkin; J. P. Filippini; S. Fliescher; J. A. Grayson; Grantland Hall; M. Halpern; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin

Bicep Array is a cosmic microwave background (CMB) polarization experiment that will begin observing at the South Pole in early 2019. This experiment replaces the five Bicep2 style receivers that compose the Keck Array with four larger Bicep3 style receivers observing at six frequencies from 30 to 270GHz. The 95GHz and 150GHz receivers will continue to push the already deep Bicep/Keck CMB maps while the 30/40GHz and 220/270GHz receivers will constrain the synchrotron and galactic dust foregrounds respectively. Here we report on the design and performance of the Bicep Array instruments focusing on the mount and cryostat systems.


The Astrophysical Journal | 2016

BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; Sarah M. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin; Ju-Hyung Kang; K. S. Karkare; E. Karpel; J. P. Kaufman

A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the BICEP2 and the Keck Array maps and results in reducing E to B leakage from LCDM E-modes to a level corresponding to a tensor-to-scalar ratio of

Collaboration


Dive into the C. Sheehy's collaboration.

Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. C. Hilton

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Halpern

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Brevik

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. W. Aikin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Bullock

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge