Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Shinohara is active.

Publication


Featured researches published by C. Shinohara.


Space Science Reviews | 2004

The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite

William V. Boynton; W. C. Feldman; I. G. Mitrofanov; Larry G. Evans; Robert C. Reedy; S. W. Squyres; Richard D. Starr; Jack I. Trombka; C. d'Uston; J.R. Arnold; P.A.J. Englert; Albert E. Metzger; H. Wänke; J. Brückner; Darrell M. Drake; C. Shinohara; C. Fellows; David K. Hamara; K. Harshman; K. E. Kerry; Carl Turner; M. Ward; H. Barthe; K.R. Fuller; S. A. Storms; G. W. Thornton; J. L. Longmire; M. L. Litvak; A.K. Ton'chev

The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.


Science | 2006

Detailed images of asteroid 25143 Itokawa from Hayabusa.

J. Saito; Hideaki Miyamoto; Ryosuke Nakamura; Masateru Ishiguro; Tatsuhiro Michikami; Akiko M. Nakamura; Hirohide Demura; Sho Sasaki; Naru Hirata; C. Honda; Aya Yamamoto; Yusuke Yokota; Tetsuharu Fuse; Fumi Yoshida; David J. Tholen; Robert W. Gaskell; Tatsuaki Hashimoto; Takashi Kubota; Y. Higuchi; Tsuko Nakamura; Peter W. H. Smith; Kensuke Hiraoka; T. Honda; Shingo Kobayashi; Masato Furuya; N. Matsumoto; E. Nemoto; A. Yukishita; K. Kitazato; Budi Dermawan

Rendezvous of the Japanese spacecraft Hayabusa with the near-Earth asteroid 25143 Itokawa took place during the interval September through November 2005. The onboard camera imaged the solid surface of this tiny asteroid (535 meters by 294 meters by 209 meters) with a spatial resolution of 70 centimeters per pixel, revealing diverse surface morphologies. Unlike previously explored asteroids, the surface of Itokawa reveals both rough and smooth terrains. Craters generally show unclear morphologies. Numerous boulders on Itokawas surface suggest a rubble-pile structure.


The Astrophysical Journal | 2003

Discovery of GRB 020405 and Its Late Red Bump

P. A. Price; S. R. Kulkarni; Edo Berger; D. W. Fox; J. S. Bloom; S. G. Djorgovski; Dale A. Frail; Titus J. Galama; Fiona A. Harrison; Patrick J. McCarthy; Daniel E. Reichart; Re'em Sari; Scott A. Yost; Helmut Jerjen; K. P. Flint; A. Phillips; B. E. Warren; Timothy S. Axelrod; Roger A. Chevalier; J. Holtzman; Randy A. Kimble; Brian Paul Schmidt; J. C. Wheeler; F. Frontera; Enrico Costa; L. Piro; K. Hurley; T. L. Cline; C. Guidorzi; E. Montanari

We present the discovery of GRB 020405 made with the Interplanetary Network (IPN). With a duration of 60 s, the burst appears to be a typical long-duration event. We observed the 75 arcmin2 IPN error region with the Mount Stromlo Observatorys 50 inch robotic telescope and discovered a transient source that subsequently decayed and was also associated with a variable radio source. We identify this source as the afterglow of GRB 020405. Subsequent observations by other groups found varying polarized flux and established a redshift of 0.690 to the host galaxy. Motivated by the low redshift, we triggered observations with WFPC2 on board the Hubble Space Telescope (HST). Modeling the early ground-based data with a jet model, we find a clear red excess over the decaying optical light curves that is present between day 10 and day 141 (the last HST epoch). This bump has the spectral and temporal features expected of an underlying supernova (SN). In particular, the red color of the putative SN is similar to that of the SN associated with GRB 011121 at late time. Restricting the sample of GRBs to those with z < 0.7, a total of five bursts, red bumps at late times are found in GRB 970228, GRB 011121, and GRB 020405. It is possible that the simplest idea, namely, that all long-duration γ-ray bursts have underlying SNe with a modest dispersion in their properties (especially peak luminosity), is sufficient to explain the nondetections.


Solar System Research | 2004

Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft

I. G. Mitrofanov; M. L. Litvak; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; V. Yu. Grinkov; William V. Boynton; C. Shinohara; David K. Hamara; R. S. Saunders

We present the results of 20 months of observations of Mars by the Russian HEND instrument onboard the NASA 2001 Mars Odyssey spacecraft. We show that there are two extended subpolar regions with a soil water content of several tens of percent in the northern and southern hemispheres of Mars. The southern subpolar region is well described by a two-layer model, according to which a soil with a water content of up to 55% by mass lies under a relatively dry soil with a water mass fraction of 2% and a thickness of 15–20 g/cm2. The distribution of water in Martian regolith northern subpolar region is in good agreement with the homogeneous model and does not require invoking the more complex two-layer soil model. The water-ice content in the subsurface layer of the northern subpolar region reaches 53 % by mass. We show that there are two regions with a relatively high water content near the Martian equator. These are Arabia Terra and the Medusae Fossae formation region southwest of Olympus Mons. In these regions, a lower layer with 9–10% of water by mass may underlie the upper layer of relatively dry material ∼30 g/cm2 in thickness. The “moistest” spot near the equator is at about 30° E and 10° N. Its lower-layer soil may contain more than 16% of water by mass.


Journal of Geophysical Research | 1992

Science applications of the Mars Observer gamma ray spectrometer

William V. Boynton; Jack I. Trombka; W. C. Feldman; James R. Arnold; P. A. J. Englert; Albert E. Metzger; R. C. Reedy; S. W. Squyres; H. Wänke; S. H. Bailey; J. Brückner; J. L. Callas; Darrell M. Drake; P. Duke; Larry G. Evans; E. L. Haines; F. C. McCloskey; H. Mills; C. Shinohara; R. Starr

The Mars Observer gamma ray spectrometer will return data related to the elemental composition of Mars. The instrument has both a gamma ray spectrometer and several neutron detectors. The gamma ray spectrometer will return a spectrum nominally every 20 s from Mars permitting a map of the elemental abundances to be made. The gamma rays are emitted from nuclei involved in radioactive decay, from nuclei formed by capture of a thermal neutron, and from nuclei put in an excited state by a fast-neutron interaction. The gamma rays come from an average depth of the order of a few tens of centimeters. The spectrum will show sharp emission lines whose intensity determines the concentration of the element and whose energy identifies the element. The neutron detectors, using the fact that the orbital velocity of the Mars Observer spacecraft is similar to the velocity of thermal neutrons, determine both the thermal and epithermal neutron flux. These parameters are particularly sensitive to the concentration of hydrogen in the upper meter of the surface. By combining the results from both techniques it is possible to map the depth dependence of hydrogen in the upper meter as well. These data permit a variety of Martian geoscience problems to be addressed including the crust and mantle composition, weathering processes, volcanism, and the volatile reservoirs and processes. In addition, the instrument is also sensitive to gamma ray and particle fluxes from non-Martian sources and will be able to address problems of astrophysical interest including gamma ray bursts, the extragalactic background, and solar processes.


Solar System Research | 2003

Search for Water in Martian Soil Using Global Neutron Mapping by the Russian HEND Instrument Onboard the US 2001 Mars Odyssey Spacecraft

I. G. Mitrofanov; M. L. Litvak; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake

We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.


Solar System Research | 2004

Seasonal Carbon Dioxide Depositions on the Martian Surface as Revealed from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft

M. L. Litvak; I. G. Mitrofanov; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake

We present the results of eighteen months of observations of the seasonal caps of Mars based on data from the neutron spectroscopy of the surface by the Russian HEND Instrument mounted aboard the NASA 2001 Mars Odyssey spacecraft. A four-dimensional model of the Martian seasonal caps was developed on the basis of these observation data. The model shows how the thickness of the frozen carbon dioxide changes in different surface regions. Using the results of the model, we estimated the total mass of the seasonal caps for the period of maximal accumulation of seasonal depositions and the rates of condensation and sublimation of the seasonal cover.


Astrophysical Journal Supplement Series | 2006

Mars Odyssey Joins the Third Interplanetary Network

K. Hurley; I. G. Mitrofanov; A. S. Kozyrev; M. L. Litvak; A. Sanin V. Grinkov; S. Charyshnikov; William V. Boynton; C. Fellows; K. Harshman; David K. Hamara; C. Shinohara; Richard D. Starr; T. L. Cline

The Mars Odyssey spacecraft carries two experiments that are capable of detecting cosmic gamma-ray bursts and soft gamma repeaters. Since 2001 April they have detected over 275 bursts and, in conjunction with the other spacecraft of the interplanetary network, localized many of them rapidly and precisely enough to allow sensitive multiwavelength counterpart searches. We present the Mars Odyssey mission and describe the burst capabilities of the two experiments in detail. We explain how the spacecraft timing and ephemeris have been verified in-flight using bursts from objects whose precise positions are known by other means. Finally, we show several examples of localizations and discuss future plans for the Odyssey mission and the network as a whole.


Solar System Research | 2003

Seasonal Neutron-Flux Variations in the Polar Caps of Mars as Revealed by the Russian HEND Instrument Onboard the NASA 2001 Mars Odyssey Spacecraft

M. L. Litvak; I. G. Mitrofanov; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake; Maria T. Zuber; David E. Smith

We analyze the flux of epithermal neutrons from the Martian surface recorded by the Russian High-Energy Neutron Detector (HEND) from February 19 through December 19, 2002. The HEND was installed onboard the NASA 2001 Mars Odyssey spacecraft and is designed to measure neutron fluxes with energies above 1 eV. Over the period of observations, statistically significant variations in the flux of epithermal (10–100 keV) neutrons were found in the northern and southern polar caps. The largest neutron-flux variations were found at subpolar latitudes, where the relative difference between the summer and winter values can reach severalfold. This correlation becomes weaker with increasing distance from the poles. Thus, the relative change in the neutron flux near the 60° parallel is slightly more than 10%. We assume that the detected variations result from the global circulation of atmospheric carbon dioxide in subpolar Martian regions. To additionally test this assumption, we compared the HEND neutron measurements onboard 2001 Mars Odyssey and the seasonal variations in the CO2-layer thickness as observed by the Mars Orbital Laser Altimeter (MOLA) onboard Mars Global Surveyor (MGS).


arXiv: High Energy Astrophysical Phenomena | 2008

Extremely long hard bursts observed by Konus‐Wind

Valentin Pal'Shin; R. L. Aptekar; Dmitry D. Frederiks; S. Golenetskii; V. Il'inskii; E. Mazets; Kazutaka Yamaoka; M. Ohno; K. Hurley; Takanori Sakamoto; P. Oleynik; M. Ulanov; I. G. Mitrofanov; D. V. Golovin; M. L. Lirvak; A. B. Sanin; William V. Boynton; C. Fellows; K. Harshman; C. Shinohara; Richard D. Starr

We report the observations of the prompt emission of the extremely long hard burst, GRB 060814B, discovered by Konus‐Wind and localized by the IPN. The observations reveal a smooth, hard, ∼40‐min long pulse followed by weaker emission seen several hours after the burst onset. We also present the Konus‐Wind data on similar burst, GRB 971208, localized by BATSE/IPN. And finally we discuss the different possible origins of these unusual events.

Collaboration


Dive into the C. Shinohara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. S. Kozyrev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxim L. Litvak

Russian Federal Space Agency

View shared research outputs
Top Co-Authors

Avatar

Anton B. Sanin

Russian Federal Space Agency

View shared research outputs
Top Co-Authors

Avatar

Richard D. Starr

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Thomas L. Cline

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

E. Mazets

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Golenetskii

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge