Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Soria is active.

Publication


Featured researches published by C. Soria.


Pathophysiology of Haemostasis and Thrombosis | 1996

Regulation Of Fibrinogen Biosynthesis By Cytokines, Consequences On The Vascular Risk

Marc Vasse; J. Paysant; J. Soria; J.P. Collet; Jean-Pierre Vannier; C. Soria

High level of fibrinogen in plasma is recognised as an important vascular risk factor. However, it is not known if the increase in fibrinogen is directly responsible for the vascular risk or is a marker of vascular inflammation. Our data strengthen the hypothesis that the fibrinogen level is a marker of vascular disease, since a parallel effect of cytokines on fibrinogen biosynthesis and on vascular injury was noted. Among the cytokines which induce the synthesis of fibrinogen, oncostatin M (OSM) is the most potent cytokine synthesised by activated monocytes for inducing fibrinogen synthesis by Hep G2 cells (human hepatoma cell line). Interestingly at the same concentrations needed for fibrinogen biosynthesis, OSM induces smooth muscle cell proliferation. In contrast, the cytokines IL-4, IL-10 and IL-13 which have a protective effect against vascular injury leading to atherosclerosis, dose dependently down regulate the biosynthesis of fibrinogen. This was due to both a decrease of IL-6 induced fibrinogen synthesis by hepatocytes, evidenced by a decrease in fibrinogen secretion in the medium and beta chain mRNA expression and to an inhibition of production of the hepatocyte-stimulating activity for fibrinogen biosynthesis (HSF) by LPS-activated monocytes. Noteworthingly, IL-10 induces a significant decrease of the production of OSM by LPS-activated monocytes. In situ activation of monocytes by cytokines in the vessel wall could also contribute to the deposition of fibrin(ogen) derivatives, identified as pathogenic factor.


Journal of Hematology & Oncology | 2012

Opposite regulation by PI3K/Akt and MAPK/ERK pathways of tissue factor expression, cell-associated procoagulant activity and invasiveness in MDA-MB-231 cells

Chaoquan Hu; Limin Huang; Caroline Gest; Xiaodong Xi; Anne Janin; C. Soria; Hong Li; He-Lin Lu

BackgroundTissue factor (TF), an initiator of blood coagulation, participates in cancer progression and metastasis. We recently found that inhibition of MAPK/ERK upregulated both full length TF (flTF) and soluble isoform TF (asTF) gene expression and cell-associated TF activity in breast cancer MDA-MB-231 cells. We explored the possible mechanisms, especially the possible interaction with EGFR and PI3K/Akt pathways.MethodsA plasmid containing TF promoter −2174 ~ +128 plus luciferase reporter gene was introduced into MDA-MB-231 cells to evaluate TF promoter activity. In order to study the interaction of these pathways, ERK inhibitor (PD98059), PI3K inhibitors (LY294002, wortmannin), Akt inhibitor (A6730), and EGFR inhibitor (erlotinib) as well as the corresponding siRNAs were used to treat MDA-MB-231 cells, and ovarian cancer OVCAR-3 and SKOV-3 cells. Quantitative PCR and western blot were used to determine TF expression. One stage clotting assays were used to measure pro-coagulation activity of the MDA-MB-231 cells.ResultsWe show that PI3K inhibitors LY294002, wortmannin and A6730 significantly inhibited TF promoter activity, and reduced TF mRNA and protein levels due to the inhibition of Akt phosphorylation. In contrast, ERK inhibitor PD98059 and ERK siRNA enhanced TF promoter activity by 2.5 fold and induced an increase in TF mRNA and protein levels in a dose dependent manner in these cells. The PI3K/Akt pathway was shown to be involved in PD98059-induced TF expression because the induction was inhibited by PI3K/Akt inhibitors. Most interestingly, the EGFR inhibitor erlotinib and EGFR siRNA also significantly suppressed PD98059- or ERK siRNA-induced TF promoter activity and TF protein expression. Similar results were found with ovarian cancer cells SKOV-3 and OVCAR-3. Furthermore, in MDA-MB-231, mRNA levels of asTF were regulated in a similar way to that of TF in response to the cell treatment.ConclusionsThis study showed a regulatory mechanism in which MAPK/ERK signals inhibit EGFR/PI3K/Akt-mediated TF expression in breast cancer MDA-MB-231 cells. The same regulation was observed in ovarian cancer OVCAR-3 and SKOV-3 cells. Interestingly, we observed that both flTF and asTF could be regulated in a parallel manner in MDA-MB-231. As the PI3K/Akt pathway and EGFR regulate TF expression in cancer cells, targeting these signaling components is expected to potentially inhibit TF expression-associated tumor progression.


Cancer Letters | 2012

Ovarian cancer: Stat3, RhoA and IGF-IR as therapeutic targets

Caroline Gest; Pezhman Mirshahi; Hong Li; Linda-Louise Pritchard; Ulrich Joimel; Emmanuel Blot; Jean Chidiac; Bernard Poletto; Jean-Pierre Vannier; Rémi Varin; Massoud Mirshahi; Lionel Cazin; Eric Pujade-Lauraine; J. Soria; C. Soria

Seeking to improve ovarian cancer therapy, we compared biological characteristics of the moderately-aggressive OVCAR-3 cell line with two highly aggressive ovarian cancer cell populations: the SK-OV-3 cell line, and HASCJ primary cells isolated from the ascitic fluid of a patient with FIGO stage IV ovarian cancer. Secretion of angiogenic factors was not discriminative, whereas cell invasion through Matrigel and vasculogenic mimicry were much greater in the more aggressive cells. Among 10 agents tested for their ability to decrease cancer cell aggressivity using these two models, inhibitors of Stat3, IGF-IR and Rho GTPase were found to be the most promising.


BMC Cancer | 2010

Stimulation of angiogenesis resulting from cooperation between macrophages and MDA-MB-231 breast cancer cells: proposed molecular mechanism and effect of tetrathiomolybdate

Ulrich Joimel; Caroline Gest; J. Soria; Linda-Louise Pritchard; Jérôme Alexandre; Marc Laurent; Emmanuel Blot; Lionel Cazin; Jean-Pierre Vannier; Rémi Varin; Hong Li; C. Soria

BackgroundInfiltration by macrophages (Mφ) indicates a poor prognosis in breast cancers, in particular by inducing angiogenesis. Our study aimed 1) to investigate the mechanism by which cooperation between Mφ and aggressive breast cancer cells (MDA-MB-231) induces angiogenesis; 2) to examine the effect of tetrathiomolybdate (TM) on this angiogenic activity.MethodsMφ coincubated with MDA-MB-231 were used as a model to mimic the inflammatory microenvironment. Angiogenesis induced by the culture media was tested in the chick chorioallantoic membrane (CAM). Mφ phenotype was evaluated by 1) expression of the M1 marker CD80, and secretion of interleukin 10 (IL-10), an M2 marker; 2) capacity to secrete Tumour Necrosis Factor α (TNFα) when stimulated by lipopolysaccharide/interferon γ (LPS/IFNγ); 3) ability to induce MDA-MB-231 apoptosis. To explore the molecular mechanisms involved, cytokine profiles of conditioned media from MDA-MB-231, Mφ and the coculture were characterised by an antibody cytokine array. All experiments were carried out both in presence and in absence of TM.ResultsIncubation of Mφ with MDA-MB-231 induced a pro-angiogenic effect in the CAM. It emerged that the angiogenic activity of the coculture is due to the capacity of Mφ to switch from M1 Mφ towards M2, probably due to an increase in Macrophage Colony Stimulating Factor. This M1-M2 switch was shown by a decreased expression of CD80 upon LPS/IFNγ stimulation, an increased secretion of IL-10, a decreased secretion of TNFα in response to LPS/IFNγ and an inability to potentiate apoptosis. At the molecular level, the angiogenic activity of the coculture medium can be explained by the secretion of CXC chemokines/ELR+ and CC chemokines. Although TM did not modify either the M2 phenotype in the coculture or the profile of the secreted chemokines, it did decrease the angiogenic activity of the coculture medium, suggesting that TM inhibited angiogenic activity by interfering with the endothelial cell signalling induced by these chemokines.ConclusionsCooperation between Mφ and MDA-MB-231 transformed M1 Mφ to an angiogenic, M2 phenotype, attested by secretion of CXC chemokines/ELR+ and CC chemokines. TM inhibited this coculture-induced increase in angiogenic activity, without affecting either Mφ phenotype or cytokine secretion profiles.


BMC Cancer | 2013

Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines

Caroline Gest; Ulrich Joimel; Limin Huang; Linda-Louise Pritchard; Alexandre Petit; Charlène Dulong; Catherine Buquet; Chaoquan Hu; Pezhman Mirshahi; Marc Laurent; Françoise Fauvel-Lafève; Lionel Cazin; Jean-Pierre Vannier; He Lu; J. Soria; Hong Li; Rémi Varin; C. Soria

BackgroundRho GTPases are involved in cellular functions relevant to cancer. The roles of RhoA and Rac1 have already been established. However, the role of Rac3 in cancer aggressiveness is less well understood.MethodsThis work was conducted to analyze the implication of Rac3 in the aggressiveness of two breast cancer cell lines, MDA-MB-231 and MCF-7: both express Rac3, but MDA-MB-231 expresses more activated RhoA. The effect of Rac3 in cancer cells was also compared with its effect on the non-tumorigenic mammary epithelial cells MCF-10A. We analyzed the consequences of Rac3 depletion by anti-Rac3 siRNA.ResultsFirstly, we analyzed the effects of Rac3 depletion on the breast cancer cells’ aggressiveness. In the invasive MDA-MB-231 cells, Rac3 inhibition caused a marked reduction of both invasion (40%) and cell adhesion to collagen (84%), accompanied by an increase in TNF-induced apoptosis (72%). This indicates that Rac3 is involved in the cancer cells’ aggressiveness. Secondly, we investigated the effects of Rac3 inhibition on the expression and activation of related signaling molecules, including NF-κB and ERK. Cytokine secretion profiles were also analyzed. In the non-invasive MCF-7 line; Rac3 did not influence any of the parameters of aggressiveness.ConclusionsThis discrepancy between the effects of Rac3 knockdown in the two cell lines could be explained as follows: in the MDA-MB-231 line, the Rac3-dependent aggressiveness of the cancer cells is due to the Rac3/ERK-2/NF-κB signaling pathway, which is responsible for MMP-9, interleukin-6, -8 and GRO secretion, as well as the resistance to TNF-induced apoptosis, whereas in the MCF-7 line, this pathway is not functional because of the low expression of NF-κB subunits in these cells. Rac3 may be a potent target for inhibiting aggressive breast cancer.


International Journal of Oncology | 2014

The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells

Charlène Dulong; Y. J. Fang; Caroline Gest; Menglong Zhou; C. Patte-Mensah; A. G. Mensah-Nyagan; Jean-Pierre Vannier; He Lu; C. Soria; Lionel Cazin; Y. A. Mei; Rémi Varin; Hong Li

Voltage-gated Na+ channels (VGSCs) are highly expressed in several types of carcinomas including breast, prostate and lung cancers as well as in mesothelioma and cervical cancers. Although the VGSCs activity is considered crucial for the potentiation of cancer cell migration and invasion, the mechanisms responsible for their functional expression and regulation in cancer cells remain unclear. In the present study, the role of the small GTPase RhoA in the regulation of expression and function of the Nav1.5 channel in the breast cancer cell lines MDA-MB 231 and MCF-7 was investigated. RhoA silencing significantly reduced both Nav1.5 channel expression and sodium current indicating that RhoA exerts a stimulatory effect on the synthesis of an active form of Nav1.5 channel in cancer cells. The inhibition of Nav1.5 expression dramatically reduced both cell invasion and proliferation. In addition, a decrease of RhoA protein levels induced by Nav1.5 silencing was observed. Altogether, these findings revealed: i) the key role of the small GTPase RhoA in upregulation of Nav1.5 channel expression and tumor aggressiveness, and ii) the existence of a positive feedback of Nav1.5 channels on RhoA protein levels.


Cytokine | 2000

FACTORS INFLUENCING THE EFFECT OF THE SOLUBLE IL-6 RECEPTOR ON IL-6 RESPONSES IN HepG2 HEPATOCYTES

Jerome Paysant; Roland Blanqué; Marc Vasse; C. Soria; Jeannette Soria; Colin R Gardner


Fibrinolysis and Proteolysis | 1992

Effect of Interferon Gamma and Adriamycin on Fibrinolytic Activity Associated to Human Monocytes

Shahsultan Mirshahi; J. Soria; He Lu; E. PujadeLauraine; Mc. Mirshahi; A. Bemadou; C. Soria


/data/revues/02488663/v31i8/S024886631000113X/ | 2010

Protéine Z, polymorphismes du gène de la protéine Z et thromboses

V Le Cam-Duchez; Virginie Barbay; C. Soria; J.-Y. Borg


Fibrinolysis and Proteolysis | 1996

6. Risk factors of arterial thrombosis. Fibrinogen Dusart

J.P. Caen; C. Soria; J. Soria

Collaboration


Dive into the C. Soria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge