Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Tenzer is active.

Publication


Featured researches published by C. Tenzer.


Proceedings of SPIE | 2012

A Large Area Detector proposed for the Large Observatory for X-ray Timing (LOFT)

S. Zane; D. Walton; T. Kennedy; M. Feroci; J. W. den Herder; M. Ahangarianabhari; A. Argan; P. Azzarello; G. Baldazzi; Didier Barret; Giuseppe Bertuccio; P. Bodin; E. Bozzo; Franck Cadoux; Philippe Cais; R. Campana; J. Coker; A. Cros; E. Del Monte; Alessandra De Rosa; S. Di Cosimo; I. Donnarumma; Yannick Favre; Charlotte Feldman; George W. Fraser; Fabio Fuschino; M. Grassi; M. Hailey; R. Hudec; Claudio Labanti

The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in the 2022 timeframe. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. The LOFT scientific payload is composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a 10 m2-class pointed instrument with 20 times the collecting area of the best past timing missions (such as RXTE) over the 2-30 keV range, which holds the capability to revolutionize studies of X-ray variability down to the millisecond time scales. Its ground-breaking characteristic is a low mass per unit surface, enabling an effective area of ~10 m2 (@10 keV) at a reasonable weight. The development of such large but light experiment, with low mass and power per unit area, is now made possible by the recent advancements in the field of large-area silicon detectors - able to time tag an X-ray photon with an accuracy <10 μs and an energy resolution of ~260 eV at 6 keV - and capillary-plate X-ray collimators. In this paper, we will summarize the characteristics of the LAD instrument and give an overview of its capabilities.


Proceedings of SPIE | 2012

The LOFT wide field monitor

Soren Brandt; M. Hernanz; Luis Alvarez; P. Azzarello; Didier Barret; E. Bozzo; Carl Budtz-Jørgensen; R. Campana; E. Del Monte; I. Donnarumma; Y. Evangalista; M. Feroci; J. L. Galvez Sanchez; Diego Gotz; F. Hansen; J. W. den Herder; R. Hudec; J. Huovelin; D. Karelin; S. Korpela; Niels Lund; P. Orleański; M. Pohl; A. Rashevski; A. Santangelo; S. Schanne; C. Schmid; Slawomir Suchy; C. Tenzer; A. Vacchi

LOFT (Large Observatory For x-ray Timing) is one of the four missions selected in 2011 for assessment study for the ESA M3 mission in the Cosmic Vision program, expected to be launched in 2024. The LOFT mission will carry two instruments with their prime sensitivity in the 2-30 keV range: a 10 m2 class large area detector (LAD) with a <1° collimated field of view and a wide field monitor (WFM) instrument based on the coded mask principle, providing coverage of more than 1/3 of the sky. The LAD will provide an effective area ~20 times larger than any previous mission and will by timing studies be able to address fundamental questions about strong gravity in the vicinity of black holes and the equation of state of nuclear matter in neutron stars. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, with its wide field of view and good energy resolution of <300 eV, the WFM will be an excellent monitoring instrument to study long term variability of many classes of X-ray sources. The sensitivity of the WFM will be 2.1 mCrab in a one day observation, and 270 mCrab in 3s in observations of in the crowded field of the Galactic Center. The high duty cycle of the instrument will make it an ideal detector of fast transient phenomena, like X-ray bursters, soft gamma repeaters, terrestrial gamma flashes, and not least provide unique capabilities in the study of gamma ray bursts. A dedicated burst alert system will enable the distribution to the community of ~100 gamma ray burst positions per year with a ~1 arcmin location accuracy within 30 s of the burst. This paper provides an overview of the design, configuration, and capabilities of the LOFT WFM instrument.


Proceedings of SPIE | 2014

The large area detector of LOFT: the Large Observatory for X-ray Timing

S. Zane; D. J. Walton; T. Kennedy; M. Feroci; J. W. den Herder; M. Ahangarianabhari; A. Argan; P. Azzarello; G. Baldazzi; Marco Barbera; Didier Barret; Giuseppe Bertuccio; P. Bodin; E. Bozzo; L. Bradley; F. Cadoux; Philippe Cais; R. Campana; J. Coker; A. Cros; E. Del Monte; A. De Rosa; S. Di Cosimo; I. Donnarumma; Y. Favre; Charlotte Feldman; George W. Fraser; Fabio Fuschino; M. Grassi; M. Hailey

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m2-class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be reproposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017

Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

F. Werner; C. Bauer; S. Bernhard; M. Capasso; S. Diebold; F. Eisenkolb; S. Eschbach; D. Florin; C. Föhr; S. Funk; A. Gadola; F. Garrecht; G. Hermann; I. Jung; O. Kalekin; C. Kalkuhl; J. Kasperek; T. Kihm; R. Lahmann; A. Marszałek; M. Pfeifer; G. Principe; G. Pühlhofer; S. Pürckhauer; P.J. Rajda; O. Reimer; A. Santangelo; T. Schanz; Thomas Schwab; S. Steiner

Abstract The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.


Proceedings of SPIE | 2008

Monte-Carlo background simulations of present and future detectors in x-ray astronomy

C. Tenzer; E. Kendziorra; A. Santangelo

Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newtons EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.


Proceedings of SPIE | 2014

The design of the wide field monitor for the LOFT mission

Soren Brandt; M. Hernanz; Laura Alvarez; A. Argan; B. Artigues; P. Azzarello; Didier Barret; E. Bozzo; Carl Budtz-Jørgensen; R. Campana; A. Cros; E. Del Monte; I. Donnarumma; M. Feroci; J. L. Galvez Sanchez; Diego Gotz; F. K. Hansen; J. W. den Herder; R. Hudec; J. Huovelin; D. Karelin; S. Korpela; Niels Lund; M. Michalska; P. E. H. Olsen; P. Orleański; S. Pedersen; M. Pohl; A. Rachevski; A. Santangelo

LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions were completed at the end of 2013. LOFT is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m2 class Large Area Detector (LAD) with a <1° collimated FoV and a wide field monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept adaptable for other missions.


Proceedings of SPIE | 2008

A fast event preprocessor for the Simbol-X Low-Energy Detector

T. Schanz; C. Tenzer; E. Kendziorra; A. Santangelo

The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.


Proceedings of SPIE | 2016

Background studies for ATHENA: status of the activities at IAAT

E. Perinati; S. Diebold; A. Guzman; A. Santangelo; C. Tenzer

We present an update on the status of the activities at IAAT for the assessment of the background and optimization of the camera design in the context of ATHENA/WFI.


Journal of Instrumentation | 2015

FlashCam: a novel Cherenkov telescope camera with continuous signal digitization

A. Gadola; C. Bauer; F. Eisenkolb; D. Florin; C. Föhr; F. Garrecht; G. Hermann; I. Jung; O. Kalekin; C. Kalkuhl; J. Kasperek; T. Kihm; J. Kozioł; R. Lahmann; A. Manalaysay; A. Marszałek; G. Pühlhofer; P. Rajda; O. Reimer; W. Romaszkan; M. Rupiński; T. Schanz; Thomas Schwab; S. Steiner; U. Straumann; C. Tenzer; A. Vollhardt; Q. Weitzel; K. Winiarski; K. Zietara

The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for cosmic gamma rays. The FlashCam camera for its mid-size telescope introduces a new concept, with a modest sampling rate of 250 MS/s, that enables a continuous digitization as well as event buffering and trigger processing using the same front-end FPGAs. The high performance Ethernet-based readout provides a dead-time free operation for event rates up to 30 kHz corresponding to a data rate of 2.0 GByte/s sent to the camera server. We present the camera design and the current status of the project.


Proceedings of SPIE | 2014

The digital data processing concepts of the LOFT mission

C. Tenzer; A. Argan; A. Cros; Y. Favre; M. Gschwender; F. Jetter; A. Santangelo; S. Schanne; P. J. Smith; Slawomir Suchy; P. Uter; D. J. Walton; H. Wende

The Large Observatory for X-ray Timing (LOFT) is one of the five mission candidates that were considered by ESA for an M3 mission (with a launch opportunity in 2022 - 2024). LOFT features two instruments: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m2-class instrument with approximately 15 times the collecting area of the largest timing mission so far (RXTE) for the first time combined with CCD-class spectral resolution. The WFM will continuously monitor the sky and recognise changes in source states, detect transient and bursting phenomena and will allow the mission to respond to this. Observing the brightest X-ray sources with the effective area of the LAD leads to enormous data rates that need to be processed on several levels, filtered and compressed in real-time already on board. The WFM data processing on the other hand puts rather low constraints on the data rate but requires algorithms to find the photon interaction location on the detector and then to deconvolve the detector image in order to obtain the sky coordinates of observed transient sources. In the following, we want to give an overview of the data handling concepts that were developed during the study phase.

Collaboration


Dive into the C. Tenzer's collaboration.

Top Co-Authors

Avatar

E. Perinati

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Bozzo

University of Geneva

View shared research outputs
Top Co-Authors

Avatar

T. Schanz

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Diebold

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge