C. Trichard
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Trichard.
Astronomy and Astrophysics | 2018
H. Abdalla; P. Aubert; J. Chevalier; A. Fiasson; F. Krayzel; G. Lamanna; J. P. Lees; G. Maurin; Q. Piel; S. Rosier-Lees; D. A. Sanchez; T. Vuillaume; J. Carr; J.-P. Ernenwein; C. Trichard
Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very-high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very-high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048∘ (0.036∘ above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnants location. The new H.E.S.S. image of RX J1713.7-3946 allows us to reveal clear morphological differences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism.
Astronomy and Astrophysics | 2018
H. Abdalla; P. Aubert; Jérome Chevalier; A. Fiasson; G. Lamanna; J. P. Lees; G. Maurin; Q. Piel; D. A. Sanchez; T. Vuillaume; J. Carr; J.-P. Ernenwein; C. Trichard
Aims. The gamma-ray emission from the shell-type supernova remnant (SNR) RX J0852.0-4622 is studied in order to better characterize its spectral properties and its distribution over the SNR. Methods. The analysis of an extended H.E.S.S. data set at very-high energies (E > 100 GeV) permits detailed studies of the morphology and the spectrum of the whole RX J0852.0-4622 region, as well as spatially-resolved spectroscopy. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results. An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cut-off at an energy of Ecut = (6.7 +/- 1.2_stat +/- 1.2_syst) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cut-off. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644.
Astronomy and Astrophysics | 2018
H. Abdallah; P. Aubert; J. Chevalier; A. Fiasson; F. Krayzel; G. Lamanna; J. P. Lees; G. Maurin; S. Rosier-Lees; D. A. Sanchez; C. Trichard; T. Vuillaume
Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived. No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) 560 GeV) 240 GeV)<4.5×10−12 cm−2 s−1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.
arXiv: Instrumentation and Methods for Astrophysics | 2017
J.J. Watson; A. De Franco; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; Gilles Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; F. De Frondat; Jean-Laurent Dournaux; D. J. P. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; Jean-Michel Huet
The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT stru...
arXiv: Instrumentation and Methods for Astrophysics | 2017
L. Tibaldo; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; Gilles Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; A. De Franco; F. De Frondat; Jean-Laurent Dournaux; D. J. P. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; Jean-Michel Huet
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov ima...
Astronomy and Astrophysics | 2017
H. Abdalla; P. Aubert; J. Chevalier; A. Fiasson; G. Lamanna; J. P. Lees; G. Maurin; Q. Piel; D. A. Sanchez; C. Trichard; T. Vuillaume
Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 hours of the radio burst. Results: The obtained 1.4 hours of gamma-ray observations are presented and discussed. At the 99 % C.L. we obtained an integral upper limit on the gamma-ray flux of (E>350 GeV) < 1.33 x 10^-8 m^-2s^-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 x 10^47 erg/s at 99% C.L.
Proceedings of SPIE | 2016
J. L. Dournaux; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; L. Dangeon; M. K. Daniel; A. De Franco; F. De Frondat; D. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; B. Hameau; O. Hervet; N. Hidaka; J. A. Hinton
The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.
Physical Review Letters | 2016
H. Abdalla; P. Aubert; Jérome Chevalier; A. Fiasson; F. Krayzel; G. Lamanna; J. P. Lees; G. Maurin; S. Rosier-Lees; D. A. Sanchez; T. Vuillaume; J. Carr; J.-P. Ernenweuin; C. Trichard
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2016
Anthony M. Brown; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; A. De Franco; F. De Frondat; J. L. Dournaux; D. Dumas; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; J. M. Huet; I. Jegouzo; T. Jogler
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017
J.-L. Dournaux; A. De Franco; P. Laporte; Richard White; T. Greenshaw; H. Sol; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; F. De Frondat; D. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gaudemard; J. A. Graham; J. Gironnet; O. Hervet