Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Volonte is active.

Publication


Featured researches published by C. Volonte.


Glia | 2003

Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors

Marta Fumagalli; Roberta Brambilla; Nadia D'Ambrosi; C. Volonte; Michela Matteoli; Claudia Verderio; Maria P. Abbracchio

ATP is the dominant messenger for astrocyte‐to‐astrocyte calcium‐mediated communication. Definition of the exact ATP/P2 receptors in astrocytes and of their coupling to intracellular calcium ([Ca2+]i) has important implications for brain physiology and pathology. We show that, with the only exception of the P2X6 receptor, primary rat cortical astrocytes express all cloned ligand‐gated P2X (i.e., P2X1–5 and P2X7) and G‐protein‐coupled P2Y receptors (i.e., P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12). These cells also express the P2Y‐like UDP‐glucose receptor, which has been recently recognized as the P2Y14 receptor. Single‐cell image analysis showed that only some of these receptors are coupled to [Ca2+]i. While ATP induced rapid and transient [Ca2+]i increases (counteracted by the P2 antagonists suramin, pyridoxal‐phosphate‐6‐azophenyl‐2′‐4′‐disulfonic acid and oxidized ATP), the P2X1/P2X3 agonist αβmeATP produced no changes. Conversely, the P2X7 agonist BzATP markedly increased [Ca2+]i; the presence and function of the P2X7 receptor was also confirmed by the formation of the P2X7 pore. ADP and 2meSADP also produced [Ca2+]i increases antagonized by the P2Y1 antagonist MRS2179. Some cells also responded to UTP but not to UDP. Significant responses to sugar‐nucleotides were also detected, which represents the first functional response reported for the putative P2Y14 receptor in a native system. Based on agonist preference of known P2 receptors, we conclude that, in rat astrocytes, ATP‐induced calcium rises are at least mediated by P2X7 and P2Y1 receptors; additional receptors (i.e., P2X2, P2X4, P2X5, P2Y2, P2Y4, and P2Y14) may also contribute.


Cns & Neurological Disorders-drug Targets | 2012

P2X7 receptors: channels, pores and more.

C. Volonte; S. Apolloni; Stephen D. Skaper; Geoffrey Burnstock

Purine nucleotides are well established as extracellular signaling molecules. P2X7 receptors (P2X7Rs) are members of the family of ionotropic ATP-gated receptors. Their activity can be found in a limited number of cell types, but is readily detectable in cells of hemopoietic lineage including macrophages, microglia, and certain lymphocytes, and mediates the influx of Ca2+ and Na+ as well as the release of pro-inflammatory cytokines. Amongst P2X receptors, P2X7Rs behave as a bifunctional molecule. The binding of ATP induces within milliseconds the opening of a channel selective for small cations, and within seconds a larger pore opens which allows permeation by molecules with a mass of up to 900 Da. In humans at least, the P2RX7 gene is highly polymorphic, and genetic differences within P2X7R affect receptor pore formation and channel function. ATP can act as a neurotransmitter, while the presence of P2X7Rs on immune cells suggests that they also regulate immune function and inflammatory responses. In addition, activation of the P2X7R has dramatic cytotoxic properties. The role of extracellular ATP and purinoceptors in cytokine regulation and neurological disorders is, in fact, the focus of a rapidly expanding area of research. P2X7Rs may affect neuronal cell death by regulating the processing and release of interleukin-1β, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7Rs provides an inflammatory stimulus, and P2X7R-deficient mice display a marked attenuation of inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X7R activity, by regulating the release of pro-inflammatory cytokines, may be involved in the pathophysiology of neuropsychiatric disorders. The P2X7R may thus represent a critical communication link between the nervous and immune systems, while providing a target for therapeutic exploitation. In this review we discuss current biology and pharmacology of the P2X7R, as well as insights into the role for this receptor in neurological/psychiatric diseases.


Neuroscience | 2003

Up-regulation of p2x2, p2x4 receptor and ischemic cell death: prevention by p2 antagonists

F Cavaliere; F. Florenzano; Susanna Amadio; Francesca Fusco; M.T. Viscomi; Nadia D'Ambrosi; F. Vacca; Giuseppe Sancesario; Giorgio Bernardi; Marco Molinari; C. Volonte

In the present work we examined the involvement of selected P2X receptors for extracellular ATP in the onset of neuronal cell death caused by glucose/oxygen deprivation. The in vitro studies of organotypic cultures from hippocampus evidenced that P2X2 and P2X4 were up-regulated by glucose/oxygen deprivation. Moreover, we showed that ischemic conditions induced specific neuronal loss not only in hippocampal, but also in cortical and striatal organotypic cultures and the P2 receptor antagonists basilen blue and suramin prevented these detrimental effects. In the in vivo experiments we confirmed the induction of P2X receptors in the hippocampus of gerbils subjected to bilateral common carotid occlusion. In particular, P2X2 and P2X4 proteins became significantly up-regulated, although to different extent and in different cellular phenotypes. The induction was confined to the pyramidal cell layer of the CA1 subfield and to the transition zone of the CA2 subfield and it was coincident with the area of neuronal damage. P2X2 was expressed in neuronal cell bodies and fibers in the CA1 pyramidal cell layer and in the strata oriens and radiatum. Intense P2X4 immunofluorescence was localized to microglia cells. Our results indicate a direct involvement of P2X receptors in the mechanisms sustaining cell death evoked by metabolism impairment and suggest the use of selected P2 antagonists as effective neuroprotecting agents.


Neuropharmacology | 2002

P2 receptor modulation and cytotoxic function in cultured CNS neurons

Susanna Amadio; Nadia D'Ambrosi; F Cavaliere; B Murra; Giuseppe Sancesario; Giorgio Bernardi; Geoffrey Burnstock; C. Volonte

In this study we investigate the presence, modulation and biological function of P2 receptors and extracellular ATP in cultured cerebellar granule neurons. As we demonstrate by RT-PCR and western blotting, both P2X and P2Y receptor subtypes are expressed and furthermore regulated as a function of neuronal maturation. In early primary cultures, mRNA for most of the P2 receptor subtypes, except P2X(6), are found, while in older cultures only P2X(3), P2Y(1) and P2Y(6) mRNA persist. In contrast, P2 receptor proteins are more prominent in mature neurons, with the exception of P2Y(1). We also report that extracellular ATP acts as a cell death mediator for fully differentiated and mature granule neurons, for dissociated striatal primary cells and hippocampal organotypic cultures, inducing both apoptotic and necrotic features of degeneration. ATP causes cell death with EC(50) in the 20-50 microM range within few minutes of exposure and with a time lapse of at most two hours. Additional agonists for P2 receptors induce toxic effects, whereas selected antagonists are protective. Cellular swelling, lactic dehydrogenase release and nuclei fragmentation are among the features of ATP-evoked cell death, which also include direct P2 receptor modulation. Comparably to P2 receptor antagonists previously shown preventing glutamate-toxicity, here we report that competitive and non-competitive NMDA receptor antagonists inhibit the detrimental consequences of extracellular ATP. Due to the massive extracellular release of purine nucleotides and nucleosides often occurring during a toxic insult, our data indicate that extracellular ATP can now be included among the potential causes of CNS neurodegenerative events.


Neuroscience | 2001

Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells

Nadia D'Ambrosi; B Murra; F Cavaliere; Susanna Amadio; Giorgio Bernardi; Geoffrey Burnstock; C. Volonte

In a previous study we used P2 receptor antagonists to inhibit diverse responses that nerve growth factor (NGF) promotes and coordinates in PC12 cells and we suggested that P2 receptors partake in the NGF signalling cascade. In this paper, we examine the direct role of extracellular P2 receptor agonists as neurotrophic factors. ATP and 2-Cl-ATP promote neurite regeneration after priming PC12 cells with NGF and the effect is dose-dependent, with an EC(50) of about 5 and 3 microM, respectively. The number of cell clumps bearing neurites was maximally induced in day 1 and it was maintained up to about one week by ATP, or up to at least 2 weeks by 2-Cl-ATP. The involvement of P1 receptors or intracellular inosine in these actions was excluded, whereas various antagonists of P2 receptors were inhibitory. Moreover, NGF and ATP caused a direct up-regulation of P2X(2), P2X(3), P2X(4) and P2Y(2), but not P2Y(4) receptor proteins under neurite-regenerating conditions, as well as extracellular signal-regulated kinase (Erk)1-2 tyrosine/threonine phosphorylation and activation. Finally, ATP, 2-Cl-ATP and ATPgammaS enhanced neurite initiation evoked by sub-optimal NGF concentrations and ATP and 2-Cl-ATP fully sustained survival of PC12 cells after serum deprivation. Our results establish that P2 receptor agonists can behave as neurotrophic factors for neuronal cells and suggest a potential interplay between ATP and NGF in the signalling pathways triggered on their target cells.


Cell Death and Disease | 2013

Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation.

Chiara Parisi; I Arisi; Nadia D'ambrosi; Ae Storti; R Brandi; M D'Onofrio; C. Volonte

MicroRNAs (miRNAs) regulate gene expression at post-transcriptional level and are key modulators of immune system, whose dysfunction contributes to the progression of neuroinflammatory diseaseas such as amyotrophic lateral sclerosis (ALS), the most widespread motor neuron disorder. ALS is a non-cell-autonomous disease targeting motor neurons and neighboring glia, with microgliosis directly contributing to neurodegeneration. As limited information exists on miRNAs dysregulations in ALS, we examined this topic in primary microglia from superoxide dismutase 1-G93A mouse model. We compared miRNAs transcriptional profiling of non-transgenic and ALS microglia in resting conditions and after inflammatory activation by P2X7 receptor agonist. We identified upregulation of selected immune-enriched miRNAs, recognizing miR-22, miR-155, miR-125b and miR-146b among the most highly modulated. We proved that miR-365 and miR-125b interfere, respectively, with the interleukin-6 and STAT3 pathway determining increased tumor necrosis factor alpha (TNFα) transcription. As TNFα directly upregulated miR-125b, and inhibitors of miR-365/miR-125b reduced TNFα transcription, we recognized the induction of miR-365 and miR-125b as a vicious gateway culminating in abnormal TNFα release. These results strengthen the impact of miRNAs in modulating inflammatory genes linked to ALS and identify specific miRNAs as pathogenetic mechanisms in the disease.


Neuroscience | 2006

Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain

Susanna Amadio; G. Tramini; Alessandro Martorana; M.T. Viscomi; Giuseppe Sancesario; Giorgio Bernardi; C. Volonte

In the CNS, nucleotide receptors termed P2 receptors are identified on neurons and glial cells, mediating neuron-neuron, glia-glia and glia-neuron communication. In the present work, we qualify in vivo in the adult rat CNS the cellular/subcellular distribution of P2Y12 receptor protein in cerebral cortex, white matter and subcortical nuclei (striatum and substantia nigra), by means of immunofluorescence-confocal, electron microscopy and Western blot analysis. P2Y12 receptor immunoreactivity colocalizes neither with markers such as neuronal nuclei, neurofilament light chain, calbindin and tyrosine hydroxylase, nor with glial fibrillary acidic protein and isolectin B4, but with myelin basic protein and the oligodendrocyte marker RIP, in both cell bodies and processes, indicating therefore oligodendrocyte localization. Electron microscopy identifies P2Y12 receptors in both the perikaryon and under the plasmalemma of oligodendrocyte cell bodies and radiating processes, until the paranodal region of fibers. By Western blot analysis, P2Y12 receptor shows a specific band of 42-44 kDa, matching the molecular mass predicted from amino acid sequencing. Since in platelets P2Y12 receptor is known to regulate adhesion/activation and thrombus growth/stability, from our results we could speculate by analogy that, in oligodendrocytes, P2Y12 receptor signaling might contribute to the migration and adhesion of the glial processes to axons to be myelinated.


Drug Development Research | 1996

Purines and cell death

C. Franceschi; Maria P. Abbracchio; D. Barbieri; Stefania Ceruti; D. Ferrari; J. P. Iliou; Sharon Rounds; P. Schubert; E. Schulze-Lohoff; F. Rassendren; M. Staub; C. Volonte; A. R. Wakade; Geoffrey Burnstock

Increasing evidence suggests that adenosine and ATP not only modulate cell growth and differentiation, but may also act as inducers of cell death. In the session “Purines and cell death,” held during the Purines 96 Symposium and chaired by Claudio Franceschi (Modena, Italy) and Geoffrey Burnstock (London, UK) presentation and discussion of new studies on the modulation of cell death by adenosine and ATP raised novel implications for a possible role of purines in both development and in the pathophysiology of various diseases. The cloning of a new ligand‐gated P2X receptor (the P2X7) was reported, and pharmacological studies have demonstrated that this is the unique P2Z receptor known to cause cell death by cytolysis. During the session, induction of apoptosis by ATP was reported in a murine macrophage cell line (confirming a role for ATP in inflammation and immunomodulation), in cultures of renal mesangial cells and of endothelial cells from bovine main pulmonary artery; furthermore, ATP was shown to modulate glutamate neurotoxicity in cerebellar granule cells, suggesting that apoptosis by ATP is not only restricted to cells of the immune lineage, but may represent a more general means to regulate cell survival. Adenosine and its derivatives have been known for years to induce apoptosis of human lymphoid tissues, but it has been demonstrated only recently that these effects can also occur in other cell types, and that they can be due either to the activation of extracellular adenosine receptors or to an intracellular mechanism of action. During the session “Purines and cell death,” various authors reported apoptosis by adenosine analogues in human peripheral blood mononuclear cells, but also in chick sympathetic neurons, rat chromaffin cells, rat cerebellar granule neurons, intact chick embryos and rat microglial cells, suggesting that adenosine may play an important role not only in modulation of survival of lymphoid cells but also in the development and remodelling of the nervous system. A dual role for the adenosine A3 receptor in cell survival was also demonstrated in cells of the astroglial lineage, as shown by induction of apoptosis at high concentrations of A3 receptor agonists and protection from spontaneous cell death at low concentrations, suggesting that this receptor may promote either cell death or survival likely depending on the metabolic and functional state of the tissue. It was also reported that, following an ischemic episode, an alterated metabolism of adenine nucleotides and nucleosides in the heart may be the basis of the lack of recovery of phosphorylated forms of adenosine due to oxidative stress, therefore contributing to heart damage. Taken together, all these data confirm the involvement of purines in modulation of cell survival in various organs and systems; moreover, based on these data, it is expected that the characterization of the specific purinoceptor subtypes involved in these actions may lead to the development of entirely new therapeutic approaches to several diseases. Drug Dev. Res. 39:442–449, 1996.


Cns & Neurological Disorders-drug Targets | 2012

Purinergic Signalling: What is Missing and Needed Next? The Use of Transgenic Mice, Crystallographic Analysis and MicroRNA

C. Volonte; C. Parisi; Geoffrey Burnstock

While ATP is recognized as an intracellular energy source for many biochemical reactions, it is now recognised it is also an important extracellular signalling molecule. ATP is involved in both physiological and pathological events in most cell types, and receptor subtypes have been cloned and characterised. An important goal of purinergic research today is to annotate the human genome with functional information regarding the role of genes for purinergic receptors, ectonucleotidases and transporters, in brain physiology and pathology. Insights into these roles have been gained also from studies of the various purinergic knockouts, and here we report on the generation of these purinergic receptor/ectonucleotidase-null mice. Recent X-ray structures of purinergic ligand-activated receptors provide promising templates to understand the molecular mechanism of receptor actions at the atomic level, and to deploy X-ray structures to be used for structure-based drug design. In the present work we also summarize recent findings about X-ray structures of ionotropic and metabotropic purinergic receptors and ectonucleotidases. A novel and prominent role as modulators of signal propagation in animal cells is played by microRNAs. By acting as genetic switches, they might become stringent regulators of the variety of cellular responses triggered by the dynamic interactions between purinergic receptors, nucleotides/nucleosides, transporters and ectonucleotidases. In this review we highlight data on the regulation of purinergic mechanisms by microRNAs. Finally, we would like to illustrate what information is still missing or needed for the acquisition of a more complete knowledge of purinergic signalling.


Brain Research Reviews | 2005

Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia

Fabio Bianco; Marta Fumagalli; Elena Pravettoni; Nadia D'Ambrosi; C. Volonte; Michela Matteoli; Maria P. Abbracchio; Claudia Verderio

Collaboration


Dive into the C. Volonte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia D'Ambrosi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Susanna Amadio

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

F Cavaliere

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Sancesario

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge