Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.W. James Melling is active.

Publication


Featured researches published by C.W. James Melling.


Diabetes | 2006

Imaging Islets Labeled With Magnetic Nanoparticles at 1.5 Tesla

Joo Ho Tai; Paula J. Foster; Alma Rosales; Biao Feng; Craig Hasilo; Violetta Martinez; Soha S. Ramadan; Jonatan A. Snir; C.W. James Melling; Savita Dhanvantari; Brian K. Rutt; D. J. G. White

We have developed a magnetic resonance imaging (MRI) technique for imaging Feridex (superparamagnetic iron oxide [SPIO])-labeled islets of Langerhans using a standard clinical 1.5-Tesla (T) scanner and employing steady-state acquisition imaging sequence (3DFIESTA). Both porcine and rat islets were labeled with SPIO by a transfection technique using a combination of poly-l-lysine and electroporation. Electron microscopy demonstrated presence of SPIO particles within the individual islet cells, including β-cells and particles trapped between cell membranes. Our labeling method produced a transfection rate of 860 pg to 3.4 ng iron per islet, dependent on the size of the islet. The labeling procedure did not disrupt either the function or viability of the islets. In vitro 3DFIESTA magnetic resonance images of single-labeled islets corresponded with their optical images. In vivo T2*-weighted scan using 1.5 T detected as few as 200 SPIO-labeled islets transplanted under rat kidney capsule, which correlated with immunohistochemistry of the transplant for insulin and iron. Ex vivo 3DFIESTA images of kidneys containing 200, 800 or 2,000 SPIO-labeled islet isografts showed good correlation between signal loss and increasing numbers of islets. These data provide evidence that islets can be labeled with SPIO and imaged using clinically available 1.5- T MRI.


Applied Physiology, Nutrition, and Metabolism | 2008

Heat shock proteins and exercise: a primer.

Earl G. Noble; Kevin J. Milne; C.W. James Melling

Heat shock proteins (HSPs) are, in general, prosurvival molecules within the cellular environment, and the overexpression of even just 1 family of HSPs can lead to protection against and improvements after a variety of stressors. Not surprisingly, a fertile area of study has grown out of efforts to exploit the innate biologic behaviour of HSPs. Exercise, because of the inherent physiologic stresses associated with it, is but 1 stimulus that can result in a robust increase in various HSPs in several tissues, not the least of which happen to be the heart and skeletal muscle. The purpose of this review is to introduce the reader to the major HSP families, the control of their expression, and some of their biologic functions, specifically with respect to the influence of exercise. Moreover, as the first in a series of reviews from a common symposium, we will briefly introduce the concepts presented by the other authors, which include the effects of different exercise paradigms on skeletal muscle HSPs in the adult and aged systems, HSPs as regulators of inflammation, and the ion channel stabilizing effects of HSPs.


Metabolism-clinical and Experimental | 2013

The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1 diabetic rodents.

Katharine E. Hall; Matthew W. McDonald; Kenneth N. Grisé; Oscar A. Campos; Earl G. Noble; C.W. James Melling

UNLABELLED Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. OBJECTIVE To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. METHODS Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. RESULTS At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. CONCLUSIONS These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes

T. Dylan Olver; Matthew W. McDonald; Kenneth N. Grisé; Adwitia Dey; Matti D. Allen; Philip J. Medeiros; James C. Lacefield; Dwayne N. Jackson; Charles L. Rice; C.W. James Melling; Earl G. Noble; J. Kevin Shoemaker

Insulin stimulates nerve arterial vasodilation through a nitric oxide (NO) synthase (NOS) mechanism. Experimental diabetes reduces vasa nervorum NO reactivity. Studies investigating hyperglycemia and nerve arterial vasodilation typically omit insulin treatment and use sedentary rats resulting in severe hyperglycemia. We tested the hypotheses that 1) insulin-treated experimental diabetes and inactivity (DS rats) will attenuate insulin-mediated nerve arterial vasodilation, and 2) deficits in vasodilation in DS rats will be overcome by concurrent exercise training (DX rats; 75-85% VO2 max, 1 h/day, 5 days/wk, for 10 wk). The baseline index of vascular conductance values (VCi = nerve blood flow velocity/mean arterial blood pressure) were similar (P ≥ 0.68), but peak VCi and the area under the curve (AUCi) for the VCi during a euglycemic hyperinsulinemic clamp (EHC; 10 mU·kg(-1)·min(-1)) were lower in DS rats versus control sedentary (CS) rats and DX rats (P ≤ 0.01). Motor nerve conduction velocity (MNCV) was lower in DS rats versus CS rats and DX rats (P ≤ 0.01). When compared with DS rats, DX rats expressed greater nerve endothelial NOS (eNOS) protein content (P = 0.04). In a separate analysis, we examined the impact of diabetes in exercise-trained rats alone. When compared with exercise-trained control rats (CX), DX rats had a lower AUCi during the EHC, lower MNCV values, and lower sciatic nerve eNOS protein content (P ≤ 0.03). Therefore, vasa nervorum and motor nerve function are impaired in DS rats. Such deficits in rats with diabetes can be overcome by concurrent exercise training. However, in exercise-trained rats (CX and DX groups), moderate hyperglycemia lowers vasa nervorum and nerve function.


Scientific Reports | 2016

Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats

Michelle S. Dotzert; Michael R. Murray; Matthew W. McDonald; T. Dylan Olver; Thomas J. Velenosi; Anzel Hennop; Earl G. Noble; Brad L. Urquhart; C.W. James Melling

The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9–15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training.


Diabetes and Vascular Disease Research | 2013

Vessel-specific rate of vasorelaxation is slower in diabetic rats

Juan M. Murias; Oscar A Campos; Katharine E. Hall; Matthew W. McDonald; C.W. James Melling; Earl G. Noble

The rate of adjustment of endothelium-dependent vasorelaxation was examined in the aorta, iliac and femoral arteries of eight control and eight diabetic rats with and without supplementation with vitamin C. Vessels were constricted using 10−5 M phenylephrine (PE) and relaxed with 10−4 M acetylcholine (ACh condition) or 10−4 M ACh plus 10−4 M vitamin C (ACh + vitamin C condition) in a myography system. Vasorelaxation was modelled as a mono-exponential function using a non-linear regression analysis. The adjustment (τ) of vasorelaxation was faster in control (6.6 ± 3.2 s) compared to diabetic rats (8.4 ± 3.4 s) (p < 0.05). The time-to-steady-state tended to be shorter in control (32.0 ± 13.9 s) compared to diabetic rats (38.0 ± 15.0 s) (p = 0.1). ACh + vitamin C did not speed the vasorelaxation response. The τ for vasorelaxation was shorter in the femoral (6.5 ± 2.7 s) and iliac (6.8 ± 2.5 s) compared to the aorta (9.2 ± 4.2 s) (p < 0.05). The rate of vasorelaxation was greater in the femoral (3.2 ± 1.4%·s−1) compared to the iliac (2.0 ± 1.0%·s−1) and aorta (1.1 ± 0.4%·s−1) in both groups and in the iliac compared to the aorta (p < 0.05) in the control group. In conclusion, the vasorelaxation response was vessel specific with a slower rate of adjustment in diabetic compared to control animals.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Acute endurance exercise induces changes in vasorelaxation responses that are vessel-specific

Juan M. Murias; Kenneth N. Grisé; Mao Jiang; Hana Kowalchuk; C.W. James Melling; Earl G. Noble

The dynamic adjustment and amplitude of the endothelium-dependent vasorelaxation of the carotid, aorta, iliac, and femoral vessels were measured in response to acute low- (LI) or high-intensity (HI) endurance exercise. Vasorelaxation to 10(-4) M ACh was evaluated in 10 control, 10 LI, and 10 HI rats. Two-millimeter sections of carotid, aorta, iliac, and femoral arteries were mounted onto a myography system. Vasorelaxation responses were modeled as a monoexponential function. The overall τ (control, 10.5 ± 6.0 s; LI, 10.4 ± 5.7 s; HI, 11.0 ± 6.9 s) and time-to-steady-state (control, 47.6 ± 24.0 s; LI, 46.2 ± 22.8 s; HI, 49.1 ± 28.3 s) was similar in LI, HI, and control (P > 0.05). The overall (average of four vessel-type) % vasorelaxation was larger in LI (73 ± 16%) and HI (73 ± 16%) than in control (66 ± 19%) (P < 0.05). The overall rate of vasorelaxation was greater in LI (1.9 ± 0.9%·s(-1)) and HI (1.9 ± 1.1%·s(-1)) compared with control (1.6 ± 0.7%·s(-1)) (P < 0.05). The vessel-specific responses (average response for the three conditions) showed that carotid displayed a slower adjustment (τ, 18.9 ± 4.4 s; time-to-steady-state, 80.4 ± 18.4 s) compared with the aorta (τ, 10.3 ± 3.8 s; time-to-steady-state, 46.3 ± 15.2 s), the iliac (τ, 6.3 ± 2.1 s; time-to-steady-state, 30.3 ± 9.0 s), and the femoral (τ, 6.0 ± 1.9 s; time-to-steady-state, 29.3 ± 8.4 s). The % vasorelaxation was larger in the carotid (82 ± 14%) than in the aorta (67 ± 16%), iliac (61 ± 13%), and femoral (71 ± 19%) (P > 0.05). The rate of vasorelaxation was carotid (1.1 ± 0.2%·s(-1)), aorta (1.5 ± 0.4%·s(-1)), iliac (2.2 ± 0.8%·s(-1)), and femoral (2.6 ± 1.0%·s(-1)). In conclusion, an acute bout of endurance exercise increased vascular responsiveness. The dynamic and percent adjustments were vessel-specific with vessel function likely determining the response.


Physiological Reports | 2014

Ischemia‐reperfusion injury and hypoglycemia risk in insulin‐treated T1DM rats following different modalities of regular exercise

Matthew W. McDonald; Katharine E. Hall; Mao Jiang; Earl G. Noble; C.W. James Melling

While regular exercise is known to improve cardiovascular function, individuals with type 1 diabetes mellitus (T1DM) have an increased risk for exercise‐induced hypoglycemia. Clinical data suggest that higher intensities of acute exercise may alleviate the onset of hypoglycemia; however, the cardiovascular benefit from these forms of exercise in patients with T1DM has yet to be established. The purpose of this study was to investigate the cardiovascular benefit of different regular exercise regimes, while monitoring blood glucose concentrations during the post‐exercise period. Fifty rats (8‐week‐old Sprague–Dawley male) were equally divided into the following groups: nondiabetic sedentary (C), diabetic sedentary (DS), diabetic low‐intensity aerobic exercise (DL), diabetic high‐intensity aerobic exercise (DH) or diabetic resistance exercise (DR). Diabetes was induced using multiple streptozotocin injections (5×; 20 mg/kg) while subcutaneous insulin pellets maintained glycemia in a range typical for individuals that exercise with T1DM. Exercise consisted of six weeks of treadmill running (DL and DH) or weighted ladder climbs (DR). The cardiovascular benefit of each exercise program was determined by the myocardial recovery from ischemia‐reperfusion injury. Exercise‐related cardiovascular protection was dependent on the exercise modality, whereby DH demonstrated the greatest protection following an ischemic‐reperfusion injury. Each exercise modality caused a significant decline in blood glucose in the post‐exercise period; however, blood glucose levels did not reach hypoglycemic concentrations (<3.0 mmol/L) throughout the exercise intervention. These results suggest that elevating blood glucose concentrations prior to exercise allows patients with T1DM to perform exercise that is beneficial to the myocardium without the accompanying risk of hypoglycemia.


Cell Transplantation | 2012

The islet size to oxygen consumption ratio reliably predicts reversal of diabetes posttransplant.

Andrew R. Pepper; Craig Hasilo; C.W. James Melling; Delfina M. Mazzuca; Greg Vilk; Guangyong Zou; D. J. G. White

β-Cell replacement therapy by either whole-organ pancreas or islets of Langerhans transplantation can restore carbohydrate control to diabetic patients and reduces complications associated with the disease. One of the variables inherent in islet transplantation is the isolation of functional islets from donor pancreata. Islet isolations fail to consistently produce good-quality functional islets. A rapid pretransplant assay to determine posttransplant function of islets would be an invaluable tool. We have tested the novel hypothesis that modified oxygen consumption rates (OCR), standardized to DNA quantity (nmol/min-mg DNA), would serve as a pretransplant assessment of the metabolic potency of the islets postisolation. This study compares the ability of current in vitro assays to predict in vivo restoration of normoglycemia in a diabetic nude mouse posttransplantation of adult pig islets. There is known to be a diversity of islet sizes within each preparation. This parameter has not heretofore been effectively considered a critical factor in islet engraftment. Our results suggest a surprising finding that islet size influences the probability of restoring carbohydrate control. Based on this observation, we thus developed a novel predictor of islet graft function that combines the effects of both islet OCR and size. When OCR was divided by the islet index (size), a highly significant predictor of graft function was established (p = 0.0002, n = 75). Furthermore, when OCR/islet index values exceeded 70.0 nmol/min-mg DNA/islet index, an effective threshold of diabetes reversal was observed. This assay can be performed with as few as 1,000 islet equivalents (IEQ) and conducted in less than 60 min. Our data suggest that, using this novel method to assess islet cell function prior to transplantation, OCR/islet index thresholds provide a valuable tool in identifying which islet preparations are most likely to restore glycemic control posttransplant.


Islets | 2014

Morphological assessment of pancreatic islet hormone content following aerobic exercise training in rats with poorly controlled Type 1 diabetes mellitus

Matthew W. McDonald; Michael R. Murray; Katharine E. Hall; Earl G. Noble; C.W. James Melling

Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.

Collaboration


Dive into the C.W. James Melling's collaboration.

Top Co-Authors

Avatar

Earl G. Noble

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Matthew W. McDonald

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth N. Grisé

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Thorp

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Adwitia Dey

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

J. Kevin Shoemaker

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Katharine E. Hall

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Matthew P. Krause

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge