Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Waters is active.

Publication


Featured researches published by C. Waters.


The Astrophysical Journal | 2013

Super-luminous type Ic supernovae : catching a magnetar by the tail.

C. Inserra; S. J. Smartt; A. Jerkstrand; S. Valenti; M. Fraser; D. Wright; K. W. Smith; Ting-Wan Chen; R. Kotak; Andrea Pastorello; M. Nicholl; Fabio Bresolin; R. P. Kudritzki; Stefano Benetti; M. T. Botticella; W. S. Burgett; K. C. Chambers; Mattias Ergon; H. Flewelling; J. P. U. Fynbo; S. Geier; Klaus-Werner Hodapp; D. A. Howell; M. E. Huber; Nick Kaiser; G. Leloudas; L. Magill; E. A. Magnier; M. McCrum; N. Metcalfe

We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I �10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M⊙ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spindown of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 . E(10 51 erg) . 6.9 and ejecta masses of 2.3 . Mej(M⊙) . 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic. Subject headings: supernovae: general - supernovae: individual (PTF10hgi, SN 2011ke, PTF11rks, SN 2011kf, SN 2012il) - stars: magnetars


The Astrophysical Journal | 2015

Sagittarius II, Draco II and Laevens 3: Three New Milky Way Satellites Discovered in the Pan-STARRS 1 3π Survey

Benjamin P. M. Laevens; Nicolas F. Martin; Edouard J. Bernard; Edward F. Schlafly; Branimir Sesar; H.-W. Rix; Eric F. Bell; Annette M. N. Ferguson; Colin T. Slater; William E. Sweeney; Rosemary F. G. Wyse; Avon Huxor; W. S. Burgett; K. C. Chambers; Peter W. Draper; Klaus A. Hodapp; N. Kaiser; E. A. Magnier; N. Metcalfe; John L. Tonry; R. J. Wainscoat; C. Waters

Author(s): Laevens, BPM; Martin, NF; Bernard, EJ; Schlafly, EF; Sesar, B; Rix, HW; Bell, EF; Ferguson, AMN; Slater, CT; Sweeney, WE; Wyse, RFG; Huxor, AP; Burgett, WS; Chambers, KC; Draper, PW; Hodapp, KA; Kaiser, N; Magnier, EA; Metcalfe, N; Tonry, JL; Wainscoat, RJ; Waters, C | Abstract:


The Astronomical Journal | 2014

Discovery of eight z~ 6 quasars from Pan-STARRS1

Eduardo Bañados; B. P. Venemans; Eric Morganson; Roberto Decarli; F. Walter; K. C. Chambers; H.-W. Rix; E. P. Farina; Xiaohui Fan; Linhua Jiang; Ian D. McGreer; G. De Rosa; Robert A. Simcoe; A. Weiß; P. A. Price; Jeffrey S. Morgan; W. S. Burgett; J. Greiner; Nick Kaiser; R. P. Kudritzki; E. A. Magnier; N. Metcalfe; Christopher W. Stubbs; W. Sweeney; John L. Tonry; R. J. Wainscoat; C. Waters

High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 lsim z lsim 6.2. With this strategy we discovered eight new 5.7 ≤ z ≤ 6.0 quasars, increasing the number of known quasars at z > 5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (–27.3 ≤ M 1450 ≤ –25.4; 19.6 ≤ z P1 ≤ 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Lyα emission line (25% with rest-frame equivalent width of the Lyα +N V line lower than 15 A). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.


The Astrophysical Journal | 2015

A NEW FAINT MILKY WAY SATELLITE DISCOVERED IN THE PAN-STARRS1 3π SURVEY*

Benjamin P. M. Laevens; Nicolas F. Martin; Rodrigo A. Ibata; H.-W. Rix; Edouard J. Bernard; Eric F. Bell; Branimir Sesar; Annette M. N. Ferguson; Edward F. Schlafly; Colin T. Slater; W. S. Burgett; K. C. Chambers; H. Flewelling; Klaus A. Hodapp; N. Kaiser; Rolf-Peter Kudritzki; Robert H. Lupton; E. A. Magnier; N. Metcalfe; Jeffrey S. Morgan; Paul A. Price; John L. Tonry; R. J. Wainscoat; C. Waters

We present the discovery of a faint Milky Way satellite, Laevens 2/Triangulum II, found in the Panoramic Survey Telescope And Rapid Response System (Pan-STARRS 1) 3 pi imaging data and confirmed with follow-up wide-field photometry from the Large Binocular Cameras. The stellar system, with an absolute magnitude of M_V=-1.8 +/-0.5, a heliocentric distance of 30 +2/-2 kpc, and a half-mass radius of 34 +9/-8 pc, shows remarkable similarity to faint, nearby, small satellites such as Willman 1, Segue 1, Segue 2, and Bootes II. The discovery of Laevens 2/Triangulum II further populates the region of parameter space for which the boundary between dwarf galaxies and globular clusters becomes tenuous. Follow-up spectroscopy will ultimately determine the nature of this new satellite, whose spatial location hints at a possible connection with the complex Triangulum-Andromeda stellar structures.


Publications of the Astronomical Society of the Pacific | 2013

The Pan-STARRS Moving Object Processing System

Larry Denneau; Robert Jedicke; T. Grav; Mikael Granvik; Jeremy Kubica; Andrea Milani; Peter Vereš; R. J. Wainscoat; Daniel Chang; Francesco Pierfederici; Nick Kaiser; K. C. Chambers; J. N. Heasley; E. A. Magnier; Paul A. Price; Jonathan Myers; Jan Kleyna; Henry H. Hsieh; Davide Farnocchia; C. Waters; W. H. Sweeney; Denver Green; Bryce Bolin; W. S. Burgett; Jeffrey S. Morgan; John L. Tonry; K. W. Hodapp; Serge Chastel; S. R. Chesley; A. Fitzsimmons

ABSTRACT.We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5%>99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that a...


Monthly Notices of the Royal Astronomical Society | 2010

The M31 globular cluster system: ugriz and K-band photometry and structural parameters

Mark B. Peacock; Thomas J. Maccarone; Christian Knigge; Arunav Kundu; C. Waters; Stephen E. Zepf; David R. Zurek

We present an updated catalogue of M31 globular clusters (GCs) based on images from the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope and from the Sloan Digital Sky Survey (SDSS). Our catalogue includes new, self-consistent ugriz and K-band photometry of these clusters. We discuss the difficulty of obtaining accurate photometry of clusters projected against M31 due to small-scale background structure in the galaxy. We consider the effect of this on the accuracy of our photometry and provide realistic photometric error estimates. We investigate possible contamination in the current M31 GC catalogues using the excellent spatial resolution of these WFCAM images combined with the SDSS multicolour photometry. We identify a large population of clusters with very blue colours. Most of these have recently been proposed by other works as young clusters. We distinguish between these, and old clusters, in the final classifications. Our final catalogue includes 416 old clusters, 156 young clusters and 373 candidate clusters. We also investigate the structure of M31s old GCs using previously published King model fits to these WFCAM images. We demonstrate that the structure and colours of M31s old GC system are similar to those of the Milky Way. One GC (B383) is found to be significantly brighter in previous observations than observed here. We investigate all of the previous photometry of this GC and suggest that this variability appears to be genuine and short lived. We propose that the large increase in its luminosity may have been due to a classical nova in the GC at the time of the previous observations in 1989.


The Astrophysical Journal | 2014

A MAP OF DUST REDDENING TO 4.5 KPC FROM PAN-STARRS1

Edward F. Schlafly; Gregory M. Green; Douglas P. Finkbeiner; Mario Juric; H.-W. Rix; Nicolas F. Martin; W. S. Burgett; K. C. Chambers; Peter W. Draper; Klaus-Werner Hodapp; Nick Kaiser; R. P. Kudritzki; E. A. Magnier; N. Metcalfe; Jeffrey S. Morgan; P. A. Price; Christopher W. Stubbs; John L. Tonry; R. J. Wainscoat; C. Waters

We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination –30° at a resolution of 7-14, and is based on the estimated distances and reddenings to more than 500 million stars. The technique is designed to map dust in the Galactic plane, where many other techniques are stymied by the presence of multiple dust clouds at different distances along each line of sight. This reddening-based dust map agrees closely with the Schlegel et al. (SFD) far-infrared emission-based dust map away from the Galactic plane, and the most prominent differences between the two maps stem from known limitations of SFD in the plane. We also compare the map with Planck, finding likewise good agreement in general at high latitudes. The use of optical data from Pan-STARRS1 yields reddening uncertainty as low as 25 mmag E(B – V).


The Astrophysical Journal | 2014

MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1

Gregory M. Green; Edward F. Schlafly; Douglas P. Finkbeiner; Mario Juric; H.-W. Rix; Will Burgett; K. C. Chambers; Peter W. Draper; H. Flewelling; Rolf-Peter Kudritzki; E. A. Magnier; Nicolas F. Martin; N. Metcalfe; John L. Tonry; R. J. Wainscoat; C. Waters

We present a method to infer reddenings and distances to stars based only on their broad-band photometry, and show how this method can be used to produce a three-dimensional (3D) dust map of the Galaxy. Our method samples from the full probability density function of distance, reddening, and stellar type for individual stars, as well as the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1) 3π survey, we demonstrate that our reddening estimates are unbiased and accurate to ~0.13 mag in E(B – V) for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be constrained to within ~20%-60%, although this range can vary, depending on the reddening of the star, the precise stellar type, and its position on the sky. A later paper will present a 3D map of dust over the three quarters of the sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic science in the plane. The method we present is not limited to the passbands of the PS1 survey but may be extended to incorporate photometry from other surveys, such as the Two Micron All Sky Survey, the Sloan Digital Sky Survey (where available), and in the future, LSST and Gaia.


Monthly Notices of the Royal Astronomical Society | 2016

A systematic search for changing-look quasars in SDSS

Chelsea L. MacLeod; Nicholas P. Ross; A. Lawrence; Mike R. Goad; K. Horne; W. S. Burgett; Ken Chambers; H. Flewelling; Klaus W. Hodapp; Nick Kaiser; E. A. Magnier; R. J. Wainscoat; C. Waters

CLM acknowledges support from the STFC Consolidated Grant (Ref. St/M001229/1). NPR acknowledges support from the STFC and the Ernest Rutherford Fellowship scheme. KH acknowledges support from STFC grant ST/M001296/1. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England.


The Astrophysical Journal | 2015

THE IDENTIFICATION OF z -DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< z < 6.7

B. P. Venemans; Eduardo Bañados; Roberto Decarli; E. P. Farina; F. Walter; K. C. Chambers; X. Fan; H.-W. Rix; Edward F. Schlafly; Richard G. McMahon; Robert A. Simcoe; D. Stern; W. S. Burgett; P. W. Draper; H. Flewelling; Klaus-Werner Hodapp; Nick Kaiser; E. A. Magnier; N. Metcalfe; Jeffrey S. Morgan; P. A. Price; John L. Tonry; C. Waters; Yusra AlSayyad; M. Banerji; S. S. Chen; E. Gonzalez-Solares; J. Greiner; Chiara Mazzucchelli; Ian D. McGreer

Luminous distant quasars are unique probes of the high redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral Hydrogen in the IGM makes quasars beyond a redshift of z~6.5 very faint in the optical

Collaboration


Dive into the C. Waters's collaboration.

Top Co-Authors

Avatar

K. C. Chambers

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

W. S. Burgett

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey S. Morgan

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Edward F. Schlafly

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge