Caetano Reis e Sousa
Francis Crick Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caetano Reis e Sousa.
Nature | 2006
Hiroki Kato; Osamu Takeuchi; Shintaro Sato; Mitsutoshi Yoneyama; Masahiro Yamamoto; Kosuke Matsui; Satoshi Uematsu; Andreas Jung; Taro Kawai; Ken J. Ishii; Osamu Yamaguchi; Kinya Otsu; Tohru Tsujimura; Chang-Sung Koh; Caetano Reis e Sousa; Yoshiharu Matsuura; Takashi Fujita; Shizuo Akira
The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.
Nature | 2005
Oliver Schulz; Sandra S. Diebold; Margaret Chen; Tanja I. Näslund; Martijn A. Nolte; Lena Alexopoulou; Yasu-Taka Azuma; Richard A. Flavell; Peter Liljeström; Caetano Reis e Sousa
Cross-presentation of cell-associated antigens plays an important role in regulating CD8+ T cell responses to proteins that are not expressed by antigen-presenting cells (APCs). Dendritic cells are the principal cross-presenting APCs in vivo and much progress has been made in elucidating the pathways that allow dendritic cells to capture and process cellular material. However, little is known about the signals that determine whether such presentation ultimately results in a cytotoxic T cell (CTL) response (cross-priming) or in CD8+ T cell inactivation (cross-tolerance). Here we describe a mechanism that promotes cross-priming during viral infections. We show that murine CD8α+ dendritic cells are activated by double-stranded (ds)RNA present in virally infected cells but absent from uninfected cells. Dendritic cell activation requires phagocytosis of infected material, followed by signalling through the dsRNA receptor, toll-like receptor 3 (TLR3). Immunization with virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL cross-priming against cell-associated antigens, which is largely dependent on TLR3 expression by antigen-presenting cells. Thus, TLR3 may have evolved to permit cross-priming of CTLs against viruses that do not directly infect dendritic cells.
Nature | 2003
Sandra S. Diebold; Maria Montoya; Hermann Unger; Lena Alexopoulou; Polly Roy; Linsey E. Haswell; Aymen Al-Shamkhani; Richard A. Flavell; Persephone Borrow; Caetano Reis e Sousa
Type I interferons (IFN-I) are important cytokines linking innate and adaptive immunity. Plasmacytoid dendritic cells make high levels of IFN-I in response to viral infection and are thought to be the major source of the cytokines in vivo. Here, we show that conventional non-plasmacytoid dendritic cells taken from mice infected with a dendritic-cell-tropic strain of lymphocytic choriomeningitis virus make similarly high levels of IFN-I on subsequent culture. Similarly, non-plasmacytoid dendritic cells secrete high levels of IFN-I in response to double-stranded RNA (dsRNA), a major viral signature, when the latter is introduced into the cytoplasm to mimic direct viral infection. This response is partially dependent on the cytosolic dsRNA-binding enzyme protein kinase R and does not require signalling through toll-like receptor (TLR) 3, a surface receptor for dsRNA. Furthermore, we show that sequestration of dsRNA by viral NS1 (refs 6, 7) explains the inability of conventional dendritic cells to produce IFN-I on infection with influenza. Our results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for dendritic cell activation that can be the target of viral interference.
Immunity | 2000
Oliver Schulz; Alexander D. Edwards; Marco Schito; Julio Aliberti; Shivanthi P. Manickasingham; Alan Sher; Caetano Reis e Sousa
CD40 ligation triggers IL-12 production by dendritic cells (DC) in vitro. Here, we demonstrate that CD40 cross-linking alone is not sufficient to induce IL-12 production by DC in vivo. Indeed, resting DC make neither the IL-12 p35 nor IL-12 p40 subunits and express only low levels of CD40. Nevertheless, after DC activation by microbial stimuli that primarily upregulate IL-12 p40 and augment CD40 expression, CD40 ligation induces a significant increase in IL-12 p35 and IL-12 p70 heterodimer production. Similarly, IL-12 p70 is produced during T cell activation in the presence but not in the absence of microbial stimuli. Thus, production of bioactive IL-12 by DC can be amplified by T cell-derived signals but must be initiated by innate signals.
Nature Immunology | 2005
Roman Spörri; Caetano Reis e Sousa
Dendritic cells (DCs) can be activated directly by triggering of receptors for pathogens or, indirectly, by exposure to inflammatory signals. It remains unclear, however, whether the two pathways result in qualitatively similar DCs or lead to equivalent adaptive immune responses. Here we report that indirect activation by inflammatory mediators generated DCs that supported CD4+ T cell clonal expansion but failed to direct T helper cell differentiation. In contrast, exposure to pathogen components resulted in fully activated DCs that promoted T helper responses. These results indicate that inflammation cannot substitute for contact with pathogen components in DC activation and suggest that the function of pattern recognition by DCs is to couple the quality of the adaptive immune response to the nature of the pathogen.
Journal of Experimental Medicine | 2010
Lionel Franz Poulin; Mariolina Salio; Emmanuel Griessinger; Fernando Anjos-Afonso; Ligia Craciun; Ji-Li Chen; Anna M. Keller; Olivier Joffre; Santiago Zelenay; Emma Nye; Alain Le Moine; Florence Faure; Vincent Donckier; David Sancho; Vincenzo Cerundolo; Dominique Bonnet; Caetano Reis e Sousa
In mouse, a subset of dendritic cells (DCs) known as CD8α+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8α+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8α+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8α+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8α+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.
European Journal of Immunology | 2003
Alexander D. Edwards; Sandra S. Diebold; Emma Slack; Hideyuki Tomizawa; Hiroaki Hemmi; Tsuneyasu Kaisho; Shizuo Akira; Caetano Reis e Sousa
Toll‐like receptors (TLR) recognize microbial and viral patterns and activate dendritic cells (DC). TLR distribution among human DC subsets is heterogeneous: plasmacytoid DC (PDC) express TLR1, 7 and 9, while other DC types do not express TLR9 but express other TLR. Here, we report that mRNA for most TLR is expressed at similar levels by murine splenic DC sub‐types, including PDC, but that TLR3 is preferentially expressed by CD8α+ DC while TLR5 and TLR7 are selectively absent from the same subset. Consistent with the latter, TLR7 ligand activates CD8α– DC and PDC, but not CD8α+ DC as measured by survival ex vivo, up‐regulation of surface markers and production of IL‐12p40. These data suggest that the dichotomy in TLR expression between plasmacytoid and non‐plasmacytoid DC is not conserved between species. However, lack of TLR7 expression could restrict the involvement of CD8α+ DC in recognition of certain mouse pathogens.
Nature | 2009
David Sancho; Olivier Joffre; Anna M. Keller; Neil C. Rogers; Dolores Martínez; Patricia Hernanz-Falcón; Ian Rosewell; Caetano Reis e Sousa
Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8α+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8α+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8α+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.
Nature Immunology | 2006
Matthew J. Robinson; David Sancho; Emma Slack; Salomé LeibundGut-Landmann; Caetano Reis e Sousa
C-type lectins expressed on myeloid cells comprise a family of proteins that share a common structural motif, and some act as receptors in pathogen recognition. But just as the presence of leucine-rich repeats alone is not sufficient to define a Toll-like receptor, the characterization of C-type lectin receptors in innate immunity requires the identification of accompanying signaling motifs. Here we focus on the known signaling pathways of myeloid C-type lectins and on their possible functions as autonomous activating or inhibitory receptors involved in innate responses to pathogens or self.
Immunological Reviews | 2009
Olivier Joffre; Martijn A. Nolte; Roman Spörri; Caetano Reis e Sousa
Summary: Pathogen invasion induces a rapid inflammatory response initiated through the recognition of pathogen‐derived molecules by pattern recognition receptors (PRRs) expressed on both immune and non‐immune cells. The initial wave of pro‐inflammatory cytokines and chemokines limits pathogen spread and recruits and activates immune cells to eradicate the invaders. Dendritic cells (DCs) are responsible for initiating a subsequent phase of immunity, dominated by the action of pathogen‐specific T and B cells. As for the early pro‐inflammatory response, DC activation is triggered by PRR signals. These signals convert resting DCs into potent antigen‐presenting cells capable of promoting the expansion and effector differentiation of naive pathogen‐specific T cells. However, it has been argued that signals from PRRs are not a prerequisite for DC activation and that pro‐inflammatory cytokines have the same effect. Although this may appear like an efficient way to expand the number of DCs that initiate adaptive immunity, evidence is accumulating that DCs activated indirectly by inflammatory cytokines are unable to induce functional T‐cell responses. Here, we review the differences between PRR‐triggered and cytokine‐induced DC activation and speculate on a potential role for DCs activated by inflammatory signals in tolerance induction rather than immunity.