Cai-Yun Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cai-Yun Zhang.
Molecular Ecology Resources | 2012
Cai-Yun Zhang; Feng-Ying Wang; Hai-Fei Yan; Gang Hao; Chi-Ming Hu; Xue-Jun Ge
It has been suggested that rbcL and matK are the core barcodes in plants, but they are not powerful enough to distinguish between closely related plant groups. Additional barcodes need to be evaluated to improve the level of discrimination between plant species. Because of their well‐studied taxonomy and extreme diversity, we used Chinese Lysimachia (Myrsinaceae) species to test the performance of core barcodes (rbcL and matK) and two additional candidate barcodes (trnH‐psbA and the nuclear ribosomal ITS); 97 accessions from four subgenus representing 34 putative Lysimachia species were included in this study. And many closely related species pairs in subgen. Lysimachia were covered to detect their discriminatory power. The inefficiency of rbcL and matK alone or combined in closely related plant groups was validated in this study. TrnH‐psbA combined with rbcL + matK did not yet perform well in Lysimachia groups. In contrast, ITS, alone or combined with rbcL and/or matK, revealed high resolving ability in Lysimachia. We support ITS as a supplementary barcode on the basis of core barcode rbcL and matK. Besides, this study also illustrates several mistakes or underlying evolutionary events in Lysimachia detected by DNA barcoding.
PLOS ONE | 2012
Hai-Fei Yan; Cai-Yun Zhang; Feng-Ying Wang; Chi-Ming Hu; Xue-Jun Ge; Gang Hao
Background Current and historical events have both affected the current distribution patterns and intraspecific divergence of plants. While numerous studies have focused on the Qinghai-Tibetan Plateau (QTP), the impacts of such events on the flora of subtropical China remain poorly understood. Subtropical China is famous for its highly complex topography and the limited impact from glaciation during the Pleistocene; this may have resulted in a different genetic legacy for species in this region compared to fully glaciated areas. Methodology/Principal Findings We used plastid and nuclear DNA sequence data and distribution modeling to analyze the divergence patterns and demographic history of Primula obconica Hance, a widespread herbaceous montane species in subtropical China. The phylogenetic analysis revealed two major lineages (lineage A and lineage B), representing a west-east split into the Yunnan and Eastern groups, and the Sichuan and Central groups, respectively. The Eastern and Central groups comprised relatively new derived haplotypes. Nested Clade Analysis and Bayesian Skyline Plot analyses both indicated that P. obconica mainly experienced a gradual expansion of populations. In addition, the simulated distribution of P. obconica during the Last Glacial Maximum was slightly larger than its present-day distribution. Conclusion/Significance Our results are the first to identify a west-east migration of P. obconica. The gradual expansion pattern and a larger potential distribution range in cold periods detected for P. obconica indicate that the population expansion of this species is consistent with the phalanx model. In addition, the current patterns of genetic differentiation have persisted as a result of the extensive environmental heterogeneity that exists in subtropical China.
PeerJ | 2016
Tong-Jian Liu; Cai-Yun Zhang; Hai-Fei Yan; Lu Zhang; Xue-Jun Ge; Gang Hao
Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.
PLOS ONE | 2015
Hai-Fei Yan; Yun-Jiao Liu; Xiu-Feng Xie; Cai-Yun Zhang; Chi-Ming Hu; Gang Hao; Xue-Jun Ge
The genus Primula is extremely diverse in the east Himalaya-Hengduan Mountains (HHM) in China as a result of rapid radiation. In order to overcome the difficulty of morphological classification of this genus, we surveyed three plastid regions (rbcL, matK, and trnH-psbA) and two nuclear markers (ITS and ITS2) from 227 accessions representing 66 Primula species across 18 sections, to assess their discriminatory power as barcodes. We found that ITS alone or combined with plastid regions showed the best discrimination across different infrageneric ranks and at species level. We suggest rbcL + matK + ITS as the first choice at present to barcode Primula plants. Although the present barcoding combination performed poorly in many closely related species of Primula, it still provided many new insights into current Primula taxonomy, such as the underlying presence of cryptic species, and several potential improper taxonomic treatments. DNA barcoding is one useful technique in the integrative taxonomy of the genus Primula, but it still requires further efforts to improve its effectiveness in some taxonomically challenging groups.
New Phytologist | 2018
Hai-Fei Yan; Cai-Yun Zhang; Arne A. Anderberg; Gang Hao; Xue-Jun Ge; John J. Wiens
What causes the disparity in biodiversity among regions is a fundamental question in biogeography, ecology, and evolutionary biology. Evolutionary and biogeographic processes (speciation, extinction, dispersal) directly determine species richness patterns, and can be studied using integrative phylogenetic approaches. However, the strikingly high richness of East Asia relative to other Northern Hemisphere regions remains poorly understood from this perspective. Here, for the first time, we test two general hypotheses (older colonization time, faster diversification rate) to explain this pattern, using the plant tribe Lysimachieae (Primulaceae) as a model system. We generated a new time-calibrated phylogeny for Lysimachieae (13 genes, 126 species), to estimate colonization times and diversification rates for each region and to test the relative importance of these two factors for explaining regional richness patterns. We find that neither time nor diversification rates alone explain richness patterns among regions in Lysimachieae. Instead, a new index that combines both factors explains global richness patterns in the group and their high East Asian biodiversity. Based on our results from Lysimachieae, we suggest that the high richness of plants in East Asia may be explained by a combination of older colonization times and faster diversification rates in this region.
Molecules | 2016
Yun-Jiao Liu; Cai-Yun Zhang; Gang Hao; Xue-Jun Ge; Hai-Fei Yan
Primula poissonii (Primulaceae) is a perennial herb, widely distributed in the Hengduan Mountain region of Southwest China. In this study, Roche 454 pyrosequencing was used to isolate microsatellite markers. A total of 4528 unique sequences were identified from 68,070 unique reads. Of these, eighty-seven microsatellite loci were screened for utility using two criteria: successful PCR amplification and variation of these loci within three wild P. poissonii populations. Twenty loci were successfully amplified and exhibited polymorphic alleles. The number of observed alleles ranged from 1 to 9 with an average of 3.5. The observed and expected heterozygosities ranged from 0.087 to 1.000 and from 0.124 to 0.828, respectively. Among these SSR loci, only the P69 locus could not be cross-amplified successfully in two closely related species P. wilsonii and P. anisodora. The microsatellite loci developed in this study will be useful for studying genetic diversity and speciation events between P. poissonii and closely related Primula species.
Applications in Plant Sciences | 2016
Chang-Han Li; Yun-Jiao Liu; Cai-Yun Zhang; Hai-Fei Yan; Xue-Jun Ge; Gang Hao
Premise of the study: Microsatellite markers from Primula sikkimensis (Primulaceae) were developed for testing deep lineage divergence and speciation events. Methods and Results: A total of 3112 microsatellites were identified from 61,755 unique reads though 454 pyrosequencing technology. Twenty-nine microsatellite loci were selected for PCR amplification and polymorphic analyses. Among the 29 tested markers, 17 microsatellite loci were further used for genotyping in three wild P. sikkimensis populations. The number of alleles varied from one to eight, and the observed heterozygosity ranged from 0.111 to 1.000. Ten simple sequence repeat loci could be successfully cross-amplified in two Primula species. The transferability values were 76.5% in P. florindae and 58.8% in P. alpicola, respectively. Conclusions: These microsatellite markers will be valuable for testing the hypothesis of lineage divergence, genetic introgression, and cryptic speciation events between P. sikkimensis and its closely related taxa.
Conservation Genetics Resources | 2017
Cai-Yun Zhang; Tong-Jian Liu; Yuan Xu; Hai-Fei Yan; Gang Hao; Xue-Jun Ge
Conservation Genetics Resources | 2017
Cai-Yun Zhang; Tong-Jian Liu; Hai-Fei Yan; Xue-Jun Ge; Gang Hao
Conservation Genetics Resources | 2017
Cai-Yun Zhang; Tong-Jian Liu; Hai-Fei Yan; Yuan Xu