Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caifeng Xie is active.

Publication


Featured researches published by Caifeng Xie.


Carcinogenesis | 2013

Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo

Wenshuang Wu; Haoyu Ye; Li Wan; Xiaolei Han; Guangcheng Wang; Jia Hu; Minhai Tang; Xingmei Duan; Yi Fan; Shichao He; Li Huang; Heying Pei; Xuewei Wang; Xiuxia Li; Caifeng Xie; Ronghong Zhang; Zhu Yuan; Yong-Qiu Mao; Yuquan Wei; Lijuan Chen

In this study, we reported millepachine (MIL), a novel chalcone compound for the first time isolated from Millettia pachycarpa Benth (Leguminosae), induced cell cycle arrest and apoptosis in human hepatocarcinoma cells in vitro and in vivo. In in vitro screening experiments, MIL showed strong antiproliferation activity in several human cancer cell lines, especially in HepG2 cells with an IC50 of 1.51 µM. Therefore, we chose HepG2 and SK-HEP-1 cells to study MILs antitumor mechanism. Flow cytometry showed that MIL induced a G2/M arrest and apoptosis in a dose-dependent manner. Western blot demonstrated that MIL-induced G2/M arrest was correlated with the inhibition of cyclin-dependent kinase 1 activity, including a remarkable decrease in cell division cycle (cdc) 2 synthesis, the accumulation of phosphorylated-Thr14 and decrease of phosphorylation at Thr161 of cdc2. This effect was associated with the downregulation of cdc25C and upmodulation of checkpoint kinase 2 in response to DNA damage. MIL also activated caspase 9 and caspase 3, and significantly increased the ratio of Bax/Bcl-2 and stimulated the release of cytochrome c into cytosol, suggesting MIL induced apoptosis via mitochondrial apoptotic pathway. Associated with those effects, MIL also induced the generation of reactive oxygen species. In HepG2 tumor-bearing mice models, MIL remarkably and dose dependently inhibited tumor growth. Treatment of mice with MIL (20mg/kg intravenous [i.v.]) caused more than 65% tumor inhibition without cardiac damage compared with 47.57% tumor reduction by 5mg/kg i.v. doxorubicin with significant cardiac damage. These effects suggested that MIL and its easily modified structural derivative might be a potential lead compound for antitumor drug.


Journal of Medicinal Chemistry | 2011

Synthesis and Biological Evaluation of Novel 5-Benzylidenethiazolidine-2,4-dione Derivatives for the Treatment of Inflammatory Diseases

Liang Ma; Caifeng Xie; Yinghua Ma; Juan Liu; Mingli Xiang; Xia Ye; Hao Zheng; Zhizhi Chen; Qinyuan Xu; Tao Chen; Jinying Chen; Jincheng Yang; Neng Qiu; Guangcheng Wang; Xiaolin Liang; Aihua Peng; Sheng-Yong Yang; Yuquan Wei; Lijuan Chen

Twenty-two compounds based on thiazolidine-2,4-dione moiety were synthesized and evaluated for the inhibitory potency on the production of nitric oxide (NO), inducible nitric oxide synthase (iNOS) activity, and the generation of prostaglandin E(2) (PEG(2)). (Z)-N-(3-chlorophenyl)-2-(4-((2,4-dioxothiazolidin-5-ylidene) methyl) phenoxy) acetamide (3I), superior to the commercial anti-inflammatory drug indomethacin, significantly inhibited iNOS activity (IC(50) = 8.66 μM), iNOS-mediated NO, and cyclooxygenase (COX)-2-derived PGE(2) production (IC(50) = 4.16 and 23.55 μM, respectively) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. Docking study revealed that 3I was perfectly docking into the active site of murine iNOS and suppressed the expression of iNOS protein as evidenced by Western blot analysis. At the dose of 50 mg/kg, oral administration of 3I possessed protective properties in both carrageenan-induced paw edema and adjuvant-induced arthritis rat models.


European Journal of Pharmacology | 2011

A novel agonist of PPAR-γ based on barbituric acid alleviates the development of non-alcoholic fatty liver disease by regulating adipocytokine expression and preventing insulin resistance.

Hao Zheng; Shilin Li; Liang Ma; Ling Cheng; Chongyang Deng; Zhizhi Chen; Caifeng Xie; Mingli Xiang; Wei Jiang; Lijuan Chen

Non-alcoholic fatty liver disease (NAFLD) is a frequent kind of metabolic syndrome, which included a wide spectrum of liver damage and closely associated with insulin resistance and other metabolic syndromes such as obesity, type II diabetes, hyperglycemia, etc. Recently, a new series of PPARγ ligands based on barbituric acid has been designed, in which 5-(4-(benzyloxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (SKLB102) showed a high affinity with PPARγ. The current study aimed to evaluate the protective effect of SKLB102 on NAFLD and investigate the underlying mechanisms. In vivo, oral administration of SKLB102 prevented the pathological development, as demonstrated by reducing liver weight and visceral fat effectively, decreasing the serum levels of alanine transaminase, TNF-α and glucose, diminishing the hepatic triglyceride and malondialdehyde content and recovering the abnormal down-regulation of LDL. Histological examination of liver sections by Oil Red O and H&E staining confirmed the protective effect of SKLB102 on NAFLD. Furthermore, SKLB102 elevated the serum level of adiponectin, reduced the serum level of leptin and prevented insulin resistance. Western blots indicated that SKLB102 increased the hepatic AMPK activities and CPT-1 expression. In vitro, SKLB102 showed the ability of significantly enhancing adiponectin expression and inhibiting leptin expression in 3T3-L1 adipocytes. Furthermore, SKLB102 could promote glucose consumption in HepG2 cells in the presence of 0.1 μM insulin. In conclusion, our current study provided strong evidence that SKLB102 had potent ability to reduce fat deposition and protect liver against NAFLD through regulating adipocytokine expression and preventing insulin resistance, which might be of protective value for the prevention of NAFLD.


Journal of Ethnopharmacology | 2013

Anti-inflammatory activity of ethyl acetate fraction of the seeds of Brucea Javanica.

Jianhong Yang; Shucai Li; Caifeng Xie; Haoyu Ye; Huan Tang; Lijuan Chen; Aihua Peng

ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Brucea javanica (L.) Merr. (Yadanzi in Chinese) have been used for the treatment of inflammation, dysentery, malaria, and cancer in Chinese traditional medicine. However, the anti-inflammatory mechanism of Brucea javanica has not been fully elucidated. This study examined the anti-inflammatory activity of ethyl acetate fraction of the seeds of Brucea javanica (EA-BJ) in vitro and in vivo. MATERIALS AND METHODS The anti-inflammatory activity of EA-BJ and its ability to modulate the production of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10 inflammatory mediators in lipopolysaccharide-activated RAW 264.7 macrophage were evaluated. Moreover, the anti-inflammatory activity of EA-BJ was also in vivo assayed by carrageenan induced paw edema in mice. RESULTS In vitro assays showed remarkable anti-inflammatory activity of EA-BJ, through the inhibition of production of NO, PGE2, TNF-α, IL-1β and IL-6 inflammatory mediators and induction of production of IL-10 anti-inflammatory cytokine. In vivo assays showed anti-inflammatory activity for decrement of the paw edema in carrageenan induced paw edema test. CONCLUSION The results obtained in vitro and in vivo showed that possible anti-inflammatory effects of EA-BJ may be attributed to inhibition pro-inflammatory mediators production, NO, PGE2, TNF-α, IL-1β and IL-6 and to increase production of IL-10 anti-inflammatory cytokine. The seeds of Brucea javanica may thus prove beneficial in the treatment of inflammatory diseases.


PLOS ONE | 2013

SKLB023 blocks joint inflammation and cartilage destruction in arthritis models via suppression of nuclear factor-kappa B activation in macrophage.

Caifeng Xie; Liang Ma; Juan Liu; Xiuxia Li; Heying Pei; Mingli Xiang; Lijuan Chen

Rheumatoid arthritis (RA) is the most common arthritis and is mainly characterized by symmetric polyarticular joint disorders. Our previous study demonstrated a novel small molecule compound (Z)-N-(3-Chlorophenyl)-2-(4-((2,4-dioxothiazolidin-5-ylidene) methyl) phenoxy) acet-amide (SKLB023) showed potently anti-arthritic effects in a rat arthritis model, however, the underlying mechanisms for this are largely unknown. Both NF-κB and macrophages were reported to play important roles in the pathologic processes of RA. The purposes of this study were to indicate whether NF-κB and macrophages contributed to anti-arthritic effects of SKLB023 in two experimental arthritis models. Our results showed that SKLB023 could significantly improve joint inflammation and cartilage destruction both in adjuvant induced arthritis (AIA) and collagen-induced arthritis (CIA) models. We further found that the binding activation of NF-κB to DNA in joint tissues and RAW264.7 macrophages were suppressed by SKLB023. SKLB023 also inhibited the NF-κB activity in peritoneal macrophages by luciferase assay. Furthermore, the number of macrophages in synovial tissues was decreased after the treatment of different doses of SKLB023. The levels of TNF-α, IL-1β, and IL-6 in plasma, and the levels of TNF-α, NO, and IL-1β in peritoneal macrophages were down-regulated by SKLB023. Finally, SKLB023 attenuated the expression of iNOS and COX-2 in vivo and suppressed the phosphorylations of components of the mitogen-activated protein kinases (MAPKs). These observations identify a novel function for SKLB023 as an inhibitor of NF-κB in macrophages of RA, highlighting that SKLB023 was a potential therapeutic strategy for RA.


Journal of Chromatography A | 2013

Identification of metabolites of honokiol in rat urine using 13C stable isotope labeling and liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

Juan Liu; Minghai Tang; Huijun Lai; Yinfeng Dong; Caifeng Xie; Haoyu Ye; Liang Ma; Neng Qiu; Yanfang Li; Lulu Cai; Lijuan Chen

A general approach based on stable isotope labeling and UPLC/Q-TOF-MS analysis of in vivo novel metabolites of honokiol has been developed in our study. In this method, urine samples were collected after intravenous administration of mixture of regular and [(13)C6]-labeled honokiol at 1:1 ratio to healthy rats. The metabolites could be easily recognized by the determination of a chromatographically co-eluted pair of isotopomers (MS doublet peaks) with similar peak intensities and mass difference corresponding to that between isotope-labeled and non-isotope-labeled honokiol. A total of 51 metabolites were detected, 37 of which were tentatively identified based on mass accuracy (<5 ppm). Among them, 33 of honokiol metabolites were first reported with 5 metabolites belonging to phase I and other 32 metabolites belonging to phase II metabolites. Our results highlighted that the main phase I metabolic pathways of honokiol in rats were oxidation, and the phase II metabolic pathways were sulfation, glucuronidation, acetylation as well as amino acids conjugation. This was the first research focused on the biotransformation of honokiol in rats, and the identification of these metabolites might provide us essential information for further pharmacological and clinical studies of honokiol.


European Journal of Medicinal Chemistry | 2012

Rational design, synthesis, and pharmacological properties of pyranochalcone derivatives as potent anti-inflammatory agents.

Fei Peng; Guangcheng Wang; Xiuxia Li; Dong Cao; Zhuang Yang; Liang Ma; Haoyu Ye; Xiaolin Liang; Yan Ran; Jinying Chen; Jingxiang Qiu; Caifeng Xie; Chongyang Deng; Mingli Xiang; Aihua Peng; Yuquan Wei; Lijuan Chen

24 derivatives (5a-x) derived from natural pyranochalcones (I and II) were designed and evaluated for their inhibitory potency on the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells. Among them, four compounds (5b, 5d, 5f, and 5h) exhibited more potent inhibitory effects on iNOS activity and iNOS-mediated NO production than a positive control indomethacin. Furthermore, 5b could significantly suppress the progression of carrageenan-induced hind paw edema compared to indomethacin at a dosage of 10 mg/kg/day, and dose-dependently ameliorated the development of adjuvant-induced arthritis (AIA) validated by arthritic scores and H&E staining of joints. In addition, docking study confirmed that 5b was an iNOS inhibitor with binding to the active site of murine iNOS.


Fitoterapia | 2014

Bioactivity-guided isolation of anti-inflammation flavonoids from the stems of Millettia dielsiana Harms

Haoyu Ye; Wenshuang Wu; Zhuowei Liu; Caifeng Xie; Minghai Tang; Shucai Li; Jianhong Yang; Huan Tang; Kai Chen; Chaofeng Long; Aihua Peng; Yuquam Wei; Lijuan Chen

Bioactivity-guided isolation of the EtOAc extract of the stems of Millettia dielsiana Harms yielded two new isoflavones together with nine known ones. Their structures were elucidated by analysis of the spectroscopic data including 2D NMR. All of the isolates were evaluated for their potential to inhibit the LPS-induced production of nitric oxide and TNF-α in murine macrophage RAW 264.7 cells. Among the tested compounds, Millesianin C (1) had the most potent anti-inflammatory effect decreasing NO production similar to that of dexamethasone and decreasing TNF-α secretion better than that of dexamethasone. Their structure-activity relationship was also analyzed.


Scientific Reports | 2015

Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

Jianhong Yang; Yongzhao Zhou; Xia Cheng; Yi Fan; Shichao He; Shucai Li; Haoyu Ye; Caifeng Xie; Wenshuang Wu; Chunyan Li; Heying Pei; Luyuan Li; Zhe Wei; Aihua Peng; Yuquan Wei; Weimin Li; Lijuan Chen

To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.


The American Journal of Chinese Medicine | 2014

Millettia pachycarpa Exhibits Anti-Inflammatory Activity Through the Suppression of LPS-Induced NO/iNOS Expression

Haoyu Ye; Caifeng Xie; Wenshuang Wu; Minli Xiang; Zhuowei Liu; Yanfang Li; Minghai Tang; Shucai Li; Jianhong Yang; Huan Tang; Kai Chen; Chaofeng Long; Aihua Peng; Lijuan Chen

The present study was designed to investigate the in vitro and in vivo anti-inflammatory activity of flavonoids isolated from Millettia pachycarpa Benth. The seeds of M. pachycarpa Benth were extracted with ethanol and subjected to chromatographic separation for the isolation of bioactive compounds. Their structures were elucidated by spectroscopic methods. The anti-inflammatory activity of the compounds was investigated by evaluating the inhibition ability of NO production, iNOS activity and iNOS protein expression induced by LPS-stimulated RAW264.7 macrophages in vitro and the carrageenan-induced hind paw edema model in vivo. Molecular docking simulation was also employed to obtain the binding parameters in the binding pocket of iNOS. Thirteen compounds (1-13) were isolated from Chinese herbal medicine M. pachycarpa Benth. Among them, 4-hydroxylonchocarpin (6) and deguelin (7) exhibited remarkable inhibitory rates of 66.5% and 57.7%, respectively, compared with that of 52.5% of indomethacin in LPS-induced macrophages cells. 4-hydroxylonchocarpin (6) with low toxicity (IC50 > 100 μm) exhibited better inhibitory effects to positive control of 1400W on iNOS activity at the concentration of 10 μm. Western blot assay revealed that 4-hydroxylonchocarpin (6) inhibited iNOS protein expression in RAW264.7 cells and molecular docking simulation showed that 4-hydroxylonchocarpin (6) fit well into the binding pocket of iNOS. In the carrageenan-induced paw edema model, our data revealed that the anti-inflammatory potential of 4-hydroxylonchocarpin (6) at 10 mg/kg showed comparable inhibitory ability to indomethacin at 5 h while a higher concentration of 4-hydroxylonchocarpin (6) at 50 mg/kg showed higher inhibitory activity than indomethacin, which was further confirmed by plasma levels of nitrite. The overall results suggest that 4-hydroxylonchocarpin (6) might be used as a potential therapeutic agent for inflammation-associated disorders.

Collaboration


Dive into the Caifeng Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge