Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caio Maximino is active.

Publication


Featured researches published by Caio Maximino.


Behavioural Brain Research | 2010

Measuring anxiety in zebrafish: A critical review

Caio Maximino; Thiago Marques de Brito; Annanda Waneza da Silva Batista; Anderson Manoel Herculano; Silvio Morato; Amauri Gouveia

Zebrafish are increasingly being used in behavioral neuroscience, neuropsychopharmacology and neurotoxicology. Recently, behavioral screens used to model anxiety in rodents were adapted to this species, and novel models which tap on zebrafish behavioral ecology have emerged. However, model building is an arduous task in experimental psychopathology, and a continuous effort to assess the validity of these measurements is being chased among some researchers. To consider a model as valid, it must possess face, predictive and/or construct validity. In this article, we first review some notions of validity, arguing that, at its limit, face and predictive validity reduce to construct validity. Then we review some procedures which have been used to study anxiety, fear or related processes in zebrafish, using the validity framework. We conclude that, although the predictive validity of some of these models is increasingly being met, there is still a long way in reaching the desired level of construct validity. The refinement of models is an ongoing activity, and behavioral validation and parametric research ought to advance that objective.


Nature Protocols | 2010

Scototaxis as anxiety-like behavior in fish

Caio Maximino; Thiago Marques de Brito; Claudio Alberto Gellis de Mattos Dias; Amauri Gouveia; Silvio Morato

The scototaxis (dark/light preference) protocol is a behavioral model for fish that is being validated to assess the antianxiety effects of pharmacological agents and the behavioral effects of toxic substances, and to investigate the (epi)genetic bases of anxiety-related behavior. Briefly, a fish is placed in a central compartment of a half-black, half-white tank; following habituation, the fish is allowed to explore the tank for 15 min; the number and duration of entries in each compartment (white or black) are recorded by the observer for the whole session. Zebrafish, goldfish, guppies and tilapias (all species that are important in behavioral neurosciences and neuroethology) have been shown to demonstrate a marked preference for the dark compartment. An increase in white compartment activity (duration and/or entries) should reflect antianxiety behavior, whereas an increase in dark compartment activity should reflect anxiety-promoting behavior. When individual animals are exposed to the apparatus on only one occasion, results can be obtained in 20 min per fish.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

Pharmacological analysis of zebrafish (Danio rerio) scototaxis

Caio Maximino; Annanda Waneza Batista da Silva; Amauri Gouveia; Anderson Manoel Herculano

The scototaxis test has been introduced recently to assess anxiety-like phenotypes in fish, including zebrafish. Parametric analyses suggest that scototaxis represents an approach-avoidance conflict, which hints at anxiety. In this model, white avoidance represents anxiety-like behavior, while the number of shuttling events represents activity. Acute or chronic fluoxetine, buspirone, benzodiazepines, ethanol, caffeine and dizocilpine were assessed using the light-dark box (scototaxis) test in zebrafish. Acute fluoxetine treatment did not alter white avoidance, but altered locomotion in the higher dose; chronic treatment (2 weeks), on the other hand, produced an anxiolytic effect with no locomotor outcomes. The benzodiazepines produced a hormetic (inverted U-shaped) dose-response profile, with intermediate doses producing anxiolysis and no effect at higher doses; clonazepam, a high-potency benzodiazepine agonist, produced a locomotor impairment at the highest dose. Buspirone produced an anxiolytic profile, without locomotor impairments. Moclobemide did not produce behavioral effects. Ethanol also produced a hormetic profile in white avoidance, with locomotor activation in 0.5% concentration. Caffeine produced an anxiogenic profile, without locomotor effects. These results suggest that the light-dark box is sensitive to anxiolytic and anxiogenic drugs in zebrafish.


Behavioural Brain Research | 2010

Parametric analyses of anxiety in zebrafish scototaxis

Caio Maximino; Thiago Marques de Brito; Rafael Colmanetti; Alvaro Antonio Assis Pontes; Henrique Meira de Castro; Renata Inah Tavares de Lacerda; Silvio Morato; Amauri Gouveia

Scototaxis, the preference for dark environments in detriment of bright ones, is an index of anxiety in zebrafish. In this work, we analyzed avoidance of the white compartment by analysis of the spatiotemporal pattern of exploratory behavior (time spent in the white compartment of the apparatus and shuttle frequency between compartments) and swimming ethogram (thigmotaxis, freezing and burst swimming in the white compartment) in four experiments. In Experiment 1, we demonstrate that spatiotemporal measures of white avoidance and locomotion do not habituate during a single 15-min session. In Experiments 2 and 3, we demonstrate that locomotor activity habituates to repeated exposures to the apparatus, regardless of whether inter-trial interval is 15-min or 24-h; however, no habituation of white avoidance was observed in either experiment. In Experiment 4, we confined animals for three 15-min sessions in the white compartment prior to recording spatiotemporal and ethogram measures in a standard preference test. After these forced exposures, white avoidance and locomotor activity showed no differences in relation to non-confined animals, but burst swimming, thigmotaxis and freezing in the white compartment were all decreased. These results suggest that neither avoidance of the white compartment nor approach to the black compartment account for the behavior of zebrafish in the scototaxis test.


Neuropharmacology | 2013

Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models.

Caio Maximino; Bruna Puty; Rancés Benzecry; Juliana Araujo; Monica Gomes Lima; Evander de Jesus Oliveira Batista; Karen Renata de Matos Oliveira; Maria Elena Crespo-López; Anderson Manoel Herculano

Serotonin (5-HT) is a neurotransmitter that is involved in many behavioral functions, including the organization of defense, and its putative pathological correlate, anxiety and stress disorders. Recently, behavioral tests for anxiety have been proposed in zebrafish. Exposure to the novel tank test or to the light/dark test increased extracellular fluid 5-HT content in the brain; anxiety-like behavior correlated positively with 5-HT content in the novel tank test, while the correlation was negative in the light/dark test. Acute treatment with a low dose of fluoxetine was anxiolytic in the geotaxis test and anxiogenic in the scototaxis test, while treatment with a higher dose produced a hyperlocomotor effect in both tasks. Buspirone and WAY 100635 were anxiolytic in both tests, while SB 224289 was anxiolytic in the geotaxis and slightly anxiogenic in the scototaxis test. Serotonin depletion with pCPA was anxiogenic in the geotaxis and anxiolytic in scototaxis. These results underline the differential sensitivity of these tasks to assess serotonergic agents; alternatively, serotonin might regulate zebrafish behavior differently in the novel tank test and in the light/dark test.


PLOS ONE | 2008

Evolutionary changes in the complexity of the tectum of nontetrapods: a cladistic approach.

Caio Maximino

Background The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on the evolution of an functionally important structure in nontetrapods, the most basal radiations of vertebrates.


Zebrafish | 2010

A Review of Monoaminergic Neuropsychopharmacology in Zebrafish

Caio Maximino; Anderson Manoel Herculano

Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Serotonergic modulation of zebrafish behavior: towards a paradox.

Anderson Manoel Herculano; Caio Maximino

Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.


Basic & Clinical Pharmacology & Toxicology | 2011

Adenosine A1, but not A2, Receptor Blockade Increases Anxiety and Arousal in Zebrafish

Caio Maximino; Monica Gomes Lima; Karen R. M. Olivera; Domingos Luiz Wanderley Picanço-Diniz; Anderson Manoel Herculano

Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeines anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors.


Genes, Brain and Behavior | 2013

Behavioral and neurochemical changes in the zebrafish leopard strain

Caio Maximino; Bruna Puty; K. R. Matos Oliveira; Anderson Manoel Herculano

The zebrafish leopard phenotype (leo) displays abnormal pigmentation and shows increased anxiety‐like behavior. The neurochemical changes associated with this anxious phenotype are not known. Here, we demonstrate that leo show increased anxiety‐like behavior in the light/dark box and in the novel tank test. This anxious phenotype is rescued by acute treatment with a dose of a serotonin reuptake inhibitor, fluoxetine, that is inactive in wild‐type animals. Moreover, leo show decreased tissue levels of serotonin, increased serotonin turnover and slightly increased monoamine oxidase activity. These results suggest that the anxious phenotype observed in leo zebrafish is caused by a decrease in serotonin uptake. This work could open an important avenue in defining the neurochemical underpinning of natural variation in anxiety disorders.

Collaboration


Dive into the Caio Maximino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Gomes Lima

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amauri Gouveia

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar

Silvio Morato

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge