Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caitlin Duffy is active.

Publication


Featured researches published by Caitlin Duffy.


ChemMedChem | 2011

Cell-free HIV-1 virucidal action by modified peptide triazole inhibitors of Env gp120.

Arangassery Rosemary Bastian; Kantharaju; Karyn McFadden; Caitlin Duffy; Srivats Rajagopal; Mark Contarino; Elisabeth S. Papazoglou; Irwin M. Chaiken

Initial entry of HIV-1 into host cells remains a compelling and yet elusive target for developing agents to prevent infection. This step is mediated by a sequence of interactions of a trimeric gp120/gp41 envelope (Env) protein complex with host cells, including initial gp120 encounter with the cellular receptor CD4 and a chemokine co-receptor usually either CCR5 or CXCR4 [1]. A peptide triazole class of entry inhibitor leads has been shown to bind to gp120 with close to nanomolar affinity, to suppress protein ligand interactions of the Env protein at both its CD4 and co-receptor binding sites and to inhibit cell infection by a broad range of virus subtypes [2]. These inhibitors appear to function mechanistically by conformationally entrapping gp120 in an inactivated state, different from either the flexible ground state of gp120 or the highly structured CD4-activated state. This entrapment effectively halts the entry process at the initial binding stages.


Retrovirology | 2013

Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions

Arangassery Rosemary Bastian; Mark Contarino; Lauren D. Bailey; Rachna Aneja; Diogo Rodrigo Magalhaes Moreira; Kevin J. Freedman; Karyn McFadden; Caitlin Duffy; Ali Emileh; George J. Leslie; Jeffrey M. Jacobson; James A. Hoxie; Irwin M. Chaiken

BackgroundWe examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity.ResultsKR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions.ConclusionsThe antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.


Journal of Medicinal Chemistry | 2015

Peptide Triazole Inactivators of HIV-1 Utilize a Conserved Two-Cavity Binding Site at the Junction of the Inner and Outer Domains of Env gp120.

Rachna Aneja; Adel A. Rashad; Huiyuan Li; Ramalingam Venkat Kalyana Sundaram; Caitlin Duffy; Lauren D. Bailey; Irwin M. Chaiken

We used coordinated mutagenesis, synthetic design, and flexible docking to investigate the structural mechanism of Env gp120 encounter by peptide triazole (PT) inactivators of HIV-1. Prior results demonstrated that the PT class of inhibitors suppresses binding at both CD4 and coreceptor sites on Env and triggers gp120 shedding, leading to cell-independent irreversible virus inactivation. Despite these enticing anti-HIV-1 phenotypes, structural understanding of the PT-gp120 binding mechanism has been incomplete. Here we found that PT engages two inhibitor ring moieties at the junction between the inner and outer domains of the gp120 protein. The results demonstrate how combined occupancy of two gp120 cavities can coordinately suppress both receptor and coreceptor binding and conformationally entrap the protein in a destabilized state. The two-cavity model has common features with small molecule gp120 inhibitor binding sites and provides a guide for further design of peptidomimetic HIV-1 inactivators based on the PT pharmacophore.


Journal of Medicinal Chemistry | 2015

Macrocyclic Envelope Glycoprotein Antagonists that Irreversibly Inactivate HIV-1 before Host Cell Encounter

Adel A. Rashad; Ramalingam Venkat Kalyana Sundaram; Rachna Aneja; Caitlin Duffy; Irwin M. Chaiken

We derived macrocyclic HIV-1 antagonists as a new class of peptidomimetic drug leads. Cyclic peptide triazoles (cPTs) retained the gp120 inhibitory and virus-inactivating signature of parent PTs, arguing that cyclization locked an active conformation. The six-residue cPT 9 (AAR029b) exhibited submicromolar antiviral potencies in inhibiting cell infection and triggering gp120 shedding that causes irreversible virion inactivation. Importantly, cPTs were stable to trypsin and chymotrypsin compared to substantial susceptibility of corresponding linear PTs.


Journal of Biological Chemistry | 2015

Mechanism of Multivalent Nanoparticle Encounter with HIV-1 for Potency Enhancement of Peptide Triazole Virus Inactivation

Arangassery Rosemary Bastian; Aakansha Nangarlia; Lauren D. Bailey; Andrew P. Holmes; R. Venkat Kalyana Sundaram; Charles Ang; Diogo Rodrigo Magalhaes Moreira; Kevin J. Freedman; Caitlin Duffy; Mark Contarino; Cameron F. Abrams; Michael J. Root; Irwin M. Chaiken

Background: HIV-1 envelope spike protein remains a compelling but elusive target for preventing infection. Results: Gold nanoparticle conjugates of peptide triazole Env inhibitors demonstrated impressive picomolar antiviral potencies. Conclusion: Nanoparticle conjugates enhanced antiviral functions by multivalent attachment to virus Env spikes. Significance: Findings reveal that multispike engagement can exploit the metastability of the virus envelope to irreversibly inactivate HIV-1. Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.


Antimicrobial Agents and Chemotherapy | 2013

Chimeric Cyanovirin-MPER Recombinantly Engineered Proteins Cause Cell-Free Virolysis of HIV-1

Mark Contarino; Arangassery Rosemary Bastian; Ramalingam Venkat Kalyana Sundaram; Karyn McFadden; Caitlin Duffy; Vamshi K. Gangupomu; Michelle K. Baker; Cameron F. Abrams; Irwin M. Chaiken

ABSTRACT Human immunodeficiency virus (HIV) is the primary etiologic agent responsible for the AIDS pandemic. In this work, we used a chimeric recombinant protein strategy to test the possibility of irreversibly destroying the HIV-1 virion using an agent that simultaneously binds the Env protein and viral membrane. We constructed a fusion of the lectin cyanovirin-N (CVN) and the gp41 membrane-proximal external region (MPER) peptide with a variable-length (Gly4Ser)x linker (where x is 4 or 8) between the C terminus of the former and N terminus of the latter. The His-tagged recombinant proteins, expressed in BL21(DE3)pLysS cells and purified by immobilized metal affinity chromatography followed by gel filtration, were found to display a nanomolar efficacy in blocking BaL-pseudotyped HIV-1 infection of HOS.T4.R5 cells. This antiviral activity was HIV-1 specific, since it did not inhibit cell infection by vesicular stomatitis virus (VSV) or amphotropic-murine leukemia virus. Importantly, the chimeric proteins were found to release intraviral p24 protein from both BaL-pseudotyped HIV-1 and fully infectious BaL HIV-1 in a dose-dependent manner in the absence of host cells. The addition of either MPER or CVN was found to outcompete this virolytic effect, indicating that both components of the chimera are required for virolysis. The finding that engaging the Env protein spike and membrane using a chimeric ligand can destabilize the virus and lead to inactivation opens up a means to investigate virus particle metastability and to evaluate this approach for inactivation at the earliest stages of exposure to virus and before host cell encounter.


Biochemistry | 2014

Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy.

Ali Emileh; Caitlin Duffy; Andrew P. Holmes; Arangassery Rosemary Bastian; Rachna Aneja; Ferit Tuzer; Srivats Rajagopal; Huiyuan Li; Cameron F. Abrams; Irwin M. Chaiken

The HIV-1 gp120 glycoprotein is the main viral surface protein responsible for initiation of the entry process and, as such, can be targeted for the development of entry inhibitors. We previously identified a class of broadly active peptide triazole (PT) dual antagonists that inhibit gp120 interactions at both its target receptor and coreceptor binding sites, induce shedding of gp120 from virus particles prior to host–cell encounter, and consequently can prevent viral entry and infection. However, our understanding of the conformational alterations in gp120 by which PT elicits its dual receptor antagonism and virus inactivation functions is limited. Here, we used a recently developed computational model of the PT–gp120 complex as a blueprint to design a covalently conjugated PT–gp120 recombinant protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent binding affinity for peptide triazoles, for sCD4 and other CD4 binding site (CD4bs) ligands, and for a CD4-induced (CD4i) ligand that binds the coreceptor recognition site. In parallel, we synthesized a PEGylated and biotinylated peptide triazole variant that retained gp120 binding activity. An N-terminally maleimido variant of this PEGylated PT, denoted AE21, was conjugated to E275C gp120 to produce the AE21–E275C covalent conjugate. Surface plasmon resonance interaction analysis revealed that the PT–gp120 conjugate exhibited suppressed binding of sCD4 and 17b to gp120, signatures of a PT-bound state of envelope protein. Similar to the noncovalent PT–gp120 complex, the covalent conjugate was able to bind the conformationally dependent mAb 2G12. The results argue that the PT–gp120 conjugate is structurally organized, with an intramolecular interaction between the PT and gp120 domains, and that this structured state embodies a conformationally entrapped gp120 with an altered bridging sheet but intact 2G12 epitope. The similarities of the PT–gp120 conjugate to the noncovalent PT–gp120 complex support the orientation of binding of PT to gp120 predicted in the molecular dynamics simulation model of the PT–gp120 noncovalent complex. The conformationally stabilized covalent conjugate can be used to expand the structural definition of the PT-induced “off” state of gp120, for example, by high-resolution structural analysis. Such structures could provide a guide for improving the subsequent structure-based design of inhibitors with the peptide triazole mode of action.


Biochemistry | 2011

Conformational and Structural Features of HIV-1 gp120 Underlying the Dual Receptor Antagonism by Cross-Reactive Neutralizing Antibody m18

Syna Kuriakose Gift; Isaac Zentner; Arne Schön; Karyn McFadden; M. Umashankara; Srivats Rajagopal; Mark Contarino; Caitlin Duffy; Joel R. Courter; Mei Yun Zhang; Jonathan M. Gershoni; Simon Cocklin; Dimiter S. Dimitrov; Amos B. Smith; Ernesto Freire; Irwin M. Chaiken

We investigated the interaction between cross-reactive HIV-1 neutralizing human monoclonal antibody m18 and HIV-1YU-2 gp120 in an effort to understand how this antibody inhibits the entry of virus into cells. m18 binds to gp120 with high affinity (KD≈5 nM) as measured by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR analysis further showed that m18 inhibits interactions of gp120 with both soluble CD4 and CD4-induced antibodies that have epitopes overlapping the coreceptor binding site. This dual receptor site antagonism, which occurs with equal potency for both inhibition effects, argues that m18 is not functioning as a mimic of CD4, in spite of the presence of a putative CD4-like loop formed by HCDR3 in the antibody. Consistent with this view, m18 was found to interact with gp120 in the presence of saturating concentrations of a CD4-mimicking small molecule gp120 inhibitor, suggesting that m18 does not require unoccupied CD4 Phe43 binding cavity residues of gp120. Thermodynamic analysis of the m18-gp120 interaction suggests that m18 stabilizes a conformation of gp120 that is unique from and less structured than the CD4-stabilized conformation. Conformational mutants of gp120 were studied for their impact on m18 interaction. Mutations known to disrupt the coreceptor binding region and to lead to complete suppression of 17b binding had minimal effects on m18 binding. This argues that energetically important epitopes for m18 binding lie outside the disrupted bridging sheet region used for 17b and coreceptor binding. In contrast, mutations in the CD4 region strongly affected m18 binding. Overall, the results obtained in this work argue that m18, rather than mimicking CD4 directly, suppresses both receptor binding site functions of HIV-1 gp120 by stabilizing a nonproductive conformation of the envelope protein. These results can be related to prior findings about the importance of conformational entrapment as a common mode of action for neutralizing CD4bs antibodies, with differences mainly in epitope utilization and the extent of gp120 structuring.


ChemMedChem | 2013

Non-natural peptide triazole antagonists of HIV-1 envelope gp120.

Kantharaju Kamanna; Rachna Aneja; Caitlin Duffy; Pamela Kubinski; Diogo Rodrigo Magalhaes Moreira; Lauren D. Bailey; Karyn McFadden; Arne Schön; Andrew P. Holmes; Ferit Tuzer; Mark Contarino; Ernesto Freire; Irwin M. Chaiken

We investigated the derivation of non‐natural peptide triazole dual receptor site antagonists of HIV‐1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG‐156 [R‐I‐N‐N‐I‐X‐W‐S‐E‐A‐M‐M‐CONH2, in which X=ferrocenyltriazole‐Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co‐receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG‐156, typified by UM‐24 (Cit‐N‐N‐I‐X‐W‐S‐CONH2) and containing the critical central stereospecific LX‐LW cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM‐24 to the greatest extent possible. The analogue with the critical “hot spot” residue Trp 6 replaced with L‐3‐benzothienylalanine (Bta) (KR‐41), as well as a completely non‐natural analogue containing D‐amino acid substitutions outside the central cluster (KR‐42, DCit‐DN‐DN‐DI‐X‐Bta‐DS‐CONH2), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV‐1 Env gp120.


Virus Research | 2017

Targeting cell surface HIV-1 Env protein to suppress infectious virus formation

Arangassery Rosemary Bastian; Charles Ang; Kantharaju Kamanna; Farida Shaheen; Yu-Hung Huang; Karyn McFadden; Caitlin Duffy; Lauren D. Bailey; Ramalingam Venkat Kalyana Sundaram; Irwin M. Chaiken

HIV-1 Env protein is essential for host cell entry, and targeting Env remains an important antiretroviral strategy. We previously found that a peptide triazole thiol KR13 and its gold nanoparticle conjugate AuNP-KR13 directly and irreversibly inactivate the virus by targeting the Env protein, leading to virus gp120 shedding, membrane disruption and p24 capsid protein release. Here, we examined the consequences of targeting cell-surface Env with the virus inactivators. We found that both agents led to formation of non-infectious virus from transiently transfected HEK293T cells. The budded non-infectious viruses lacked Env gp120 but contained gp41. Importantly, budded virions also retained the capsid protein p24, in stark contrast to p24 leakage from viruses directly treated by these agents and arguing that the agents led to deformed viruses by transforming the cells at a stage before virus budding. We found that the Env inactivators caused gp120 shedding from the transiently transfected HEK293T cells as well as non-producer CHO-K1-gp160 cells. Additionally, AuNP-KR13 was cytotoxic against the virus-producing HEK293T and CHO-K1-gp160 cells, but not untransfected HEK293T or unmodified CHO-K1 cells. The results obtained reinforce the argument that cell-surface HIV-1 Env is metastable, as on virus particles, and provides a conformationally vulnerable target for virus suppression and infectious cell inactivation.

Collaboration


Dive into the Caitlin Duffy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge