Caitlin O'Mahony
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caitlin O'Mahony.
PLOS Pathogens | 2008
Caitlin O'Mahony; Paul Scully; David O'Mahony; Sharon Murphy; Frances O'Brien; Anne Lyons; Graham Sherlock; John MacSharry; Barry Kiely; Fergus Shanahan; Liam O'Mahony
Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.
Immunology | 2006
Ann M. O'Hara; Padraig O'Regan; Aine Fanning; Caitlin O'Mahony; John MacSharry; Anne Lyons; John Bienenstock; Liam O'mahony; Fergus Shanahan
Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT‐29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)‐κB activation, interleukin (IL)‐8 secretion, pathogen adherence to IECs, and mucin‐3 (MUC3) and E‐cadherin gene expression were assayed by TransAM assay, enzyme‐linked immunosorbent assay (ELISA), fluorescence, and real‐time reverse transcriptase–polymerase chain reaction (RT‐PCR), respectively. IL‐10 and tumour necrosis factor (TNF)‐α secretion by bacteria‐treated peripheral blood‐derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune‐related genes assayed, including NF‐κB and IL‐8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL‐8 secretion at baseline and S. typhimurium‐induced pro‐inflammatory responses. B. infantis also limited flagellin‐induced IL‐8 protein secretion. The commensal bacteria did not increase MUC3or E‐cadherin expression, or interfere with pathogen binding to HT‐29 cells, but they did stimulate IL‐10 and TNF‐α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Mary O’Connell Motherway; Aldert Zomer; Sinead C. Leahy; Justus Reunanen; Francesca Bottacini; Marcus J. Claesson; Frances O'Brien; Kiera Flynn; Pat G. Casey; José Antonio Moreno Muñoz; Breda Kearney; Aileen Houston; Caitlin O'Mahony; Des Higgins; Fergus Shanahan; Airi Palva; Willem M. de Vos; Gerald F. Fitzgerald; Marco Ventura; Paul W. O'Toole; Douwe van Sinderen
Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated “tad2003.” Mutational analysis demonstrated that the tad2003 gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.
Journal of Clinical Microbiology | 2006
Pauline D. Scanlan; Fergus Shanahan; Caitlin O'Mahony; Julian Roberto Marchesi
ABSTRACT Gut microbiota shows host-specific diversity and temporal stability and significantly contributes to maintenance of a healthy gut. However, in inflammatory bowel disease, this microbiota has been implicated as a contributory factor to the illness. This study compared bacterial dynamics in Crohns disease patients to those in a control group using a culture-independent method to assess the temporal stability, relative diversity, and similarity of the dominant fecal microbiota, Clostridium spp., Bacteroides spp., Bifidobacterium spp., and lactic acid bacteria spp. (LAB) for all individuals. Fecal samples were collected over several time points from individuals with Crohns disease who were in remission (n = 11), from Crohns disease patients who relapsed into an active Crohns disease state (n = 5), and from a control group (n = 18). Denaturing gradient gel electrophoresis profiles were generated for the different microbial groups by specifically targeting different regions of the 16S rRNA gene and were compared on the basis of similarity and diversity. The temporal stability of dominant species for all Crohns disease patients was significantly lower (P < 0.005) than that for the control group. Analysis of group-specific profiles for Bifidobacterium spp. found that they were similar in all samples, while the diversity of the LAB varied significantly between the groups, but temporal stability was not significantly altered. We observed significant changes in two functionally important mutualistic groups of bacteria, viz., Clostridium and Bacteroides spp., which may have implications for the hosts gut health, since some genera are involved in production of short-chain fatty acid, e.g., butyrate.
The American Journal of Gastroenterology | 2010
John Keohane; Caitlin O'Mahony; Liam O'mahony; Siobhan O'Mahony; Eamonn M. M. Quigley; Fergus Shanahan
OBJECTIVES:Do gastrointestinal symptoms in patients with inflammatory bowel disease (IBD) in apparent remission reflect the coexistence of irritable bowel syndrome (IBS) or subclinical inflammation? The aims of this study were as follows: (i) to prospectively determine the prevalence of IBS symptoms in IBD patients in remission; and (ii) to determine whether IBS symptoms correlate with levels of fecal calprotectin.METHODS:Remission was defined by physician assessment: Crohns disease (CD) activity index ≤150 and ulcerative colitis disease activity index ≤3, and serum C-reactive protein <10, while off corticosteroids or biologics. Quality of life (QOL) (by inflammatory bowel disease questionnaire), the hospital anxiety and depression scale (HAD), and fecal calprotectin were measured.RESULTS:Rome II criteria for IBS were fulfilled in 37/62 (59.7%) of CD patients and by 17/44 (38.6%) of those with ulcerative colitis (UC). However, fecal calprotectin was significantly elevated above the upper limit of normal in both IBD patient groups, indicating the presence of occult inflammation. Furthermore, calprotectin levels were significantly higher in CD and UC patients with criteria for IBS than in those without IBS-type symptoms. QOL scores were lower and HAD scores higher among UC patients with IBS symptoms in comparison to those who did not have IBS symptoms.CONCLUSIONS:IBS-like symptoms are common in patients with IBD who are thought to be in clinical remission, but abnormal calprotectin levels suggest that the mechanism in most cases is likely to be occult inflammation rather than coexistent IBS.
The American Journal of Clinical Nutrition | 2009
Rebecca Wall; R. Paul Ross; Fergus Shanahan; Liam O'Mahony; Caitlin O'Mahony; M. Coakley; Orla M. Hart; Peadar G. Lawlor; Eamonn M. M. Quigley; Barry Kiely; Gerald F. Fitzgerald; Catherine Stanton
BACKGROUND Recent reports suggest that the metabolic activity of the gut microbiota may contribute to the pathogenesis of obesity and hepatic steatosis. OBJECTIVE The objective was to determine whether the fat composition of host tissues might be influenced by oral administration of commensal bifidobacteria previously shown by us to produce bioactive isomers of conjugated linoleic acid (CLA). DESIGN Murine trials were conducted in which linoleic acid-supplemented diets were fed with or without Bifidobacterium breve NCIMB 702258 (daily dose of 10(9) microorganisms) to healthy BALB/c mice and to severe combined immunodeficient mice for 8-10 wk. To ensure that the observations were not peculiar to mice, a similar trial was conducted in weanling pigs over 21 d. Tissue fatty acid composition was assessed by gas-liquid chromatography. RESULTS In comparison with controls, there was an increase in cis-9, trans-11 CLA in the livers of the mice and pigs after feeding with linoleic acid in combination with B. breve NCIMB 702258 (P < 0.05). In addition, an altered profile of polyunsaturated fatty acid composition was observed, including higher concentrations of the omega-3 (n-3) fatty acids eicosapentaenoic acid and docosahexaenoic acid in adipose tissue (P < 0.05). These changes were associated with reductions in the proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma (P < 0.05). CONCLUSIONS These results are consistent with the concept that the metabolome is a composite of host and microbe metabolic activity and that the influence of the microbiota on host fatty acid composition can be manipulated by oral administration of CLA-producing microorganisms.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Caitlin O'Mahony; Hanneke P.M. van der Kleij; John Bienenstock; Fergus Shanahan; Liam O'Mahony
The vagus nerve is a conduit for bidirectional signaling between the brain and the viscera. Vagal signaling has been shown to downregulate gastrointestinal inflammation, and the mechanism is thought to involve acetylcholine binding to the alpha-7 subunit of the nicotinic acetylcholine receptor on macrophages. The aims of this study were to quantify the impact of vagotomy in vivo by visualizing nuclear factor (NF)-kappaB activity and to determine if the proinflammatory impact of vagotomy could be transferred by lymphocytes. Real-time biophotonic imaging revealed that subdiaphragmatic vagotomy resulted in increased levels of NF-kappaB in vivo. NF-kappaB activation was further exaggerated in vivo following exposure to 4% DSS for 5 days. Vagotomized animals also exhibited higher disease activity scores and secreted more proinflammatory cytokines. Adoptive transfer of CD4(+) T cells from vagotomized animals (but not CD4(+) T cells from sham-operated controls) to naive dextran sulfate sodium (DSS)-treated recipients resulted in increased inflammatory scores. Further examination of the CD4(+) T cells revealed that adoptive transfer of the CD25(-) population alone from vagotomized donors (but not sham-operated donors) was sufficient to aggravate colitis in DSS-treated recipients. Increased DSS-induced inflammation was associated with reduced CD4(+)CD25(+)Foxp3(+) regulatory T cell numbers in recipients. This study clearly demonstrates the ability of the vagus nerve to modulate activity of the proinflammatory transcription factor NF-kappaB in vivo. The proinflammatory effect of vagotomy is transferable using splenic T cells and highlights a previously unappreciated cellular mechanism for linking central parasympathetic processes with mucosal inflammation and immune homeostasis.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008
Hanneke P.M. van der Kleij; Caitlin O'Mahony; Fergus Shanahan; Liam O'Mahony; John Bienenstock
The vagus nerve is an important pathway signaling immune activation of the gastrointestinal tract to the brain. Probiotics are live organisms that may engage signaling pathways of the brain-gut axis to modulate inflammation. The protective effects of Lactobacillus rhamnosus [corrected] (LR) and Bifidobacterium infantis (BI) during intestinal inflammation were studied after subdiaphragmatic vagotomy in acute dextran sulfate sodium (DSS) colitis in BALB/c mice and chronic colitis induced by transfer of CD4(+) CD62L(+) T lymphocytes from BALB/c into SCID mice. LR and BI (1 x 10(9)) were given daily. Clinical score, myeloperoxidase (MPO) levels, and in vivo and in vitro secreted inflammatory cytokine levels were found to be more severe in mice that were vagotomized compared with sham-operated animals. LR in the acute DSS model was effective in decreasing the MPO and cytokine levels in the tissue in sham and vagotomized mice. BI had a strong downregulatory effect on secreted in vitro cytokine levels and had a greater anti-inflammatory effect in vagotomized- compared with sham-operated mice. Both LR and BI retained anti-inflammatory effects in vagotomized mice. In SCID mice, vagotomy did not enhance inflammation, but BI was more effective in vagotomized mice than shams. Taken together, the intact vagus has a protective role in acute DSS-induced colitis in mice but not in the chronic T cell transfer model of colitis. Furthermore, LR and BI do not seem to engage their protective effects via this cholinergic anti-inflammatory pathway, but the results interestingly show that, in the T cell, transfer model vagotomy had a biological effect, since it increased the effectiveness of the BI in downregulation of colonic inflammation.
Clinical and translational gastroenterology | 2012
Erin L. Symonds; Caitlin O'Mahony; Susan Lapthorne; David O'Mahony; John Mac Sharry; Liam O'Mahony; Fergus Shanahan
OBJECTIVES:Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage.METHODS:BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (102–108 colony-forming unit (CFU)) and durations (106 CFU for 1–6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (106 CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase–isomaltase, maltase, and alkaline phosphatase.RESULTS:S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge.CONCLUSIONS:Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.
International Journal of Cancer | 2013
Grace O'Callaghan; Aideen E. Ryan; Peter Neary; Caitlin O'Mahony; Fergus Shanahan; Aileen Houston
Despite studies demonstrating that inhibition of cyclooxygenase‐2 (COX‐2)‐derived prostaglandin E2 (PGE2) has significant chemotherapeutic benefits in vitro and in vivo, inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular side effects, limiting the clinical utility of these drugs. PGE2 signals through four different receptors (EP1–EP4) and targeting individual receptor(s) may avoid these side effects, while retaining significant anticancer benefits. Here, we show that targeted inhibition of the EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 receptor‐specific antagonist, ONO‐8713, effectively reduced the growth of established CT26 tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less effective in reducing tumor growth. This antitumor effect was associated with reduced Fas ligand expression and attenuated tumor‐induced immune suppression. In particular, tumor infiltration by CD4+CD25+Foxp3+ regulatory T cells was decreased, whereas the cytotoxic activity of isolated splenocytes against CT26 cells was increased. F4/80+ macrophage infiltration was also decreased; however, there was no change in macrophage phenotype. These findings suggest that the EP1 receptor represents a potential target for the treatment of colon cancer.