Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caitlyn W. Barrett is active.

Publication


Featured researches published by Caitlyn W. Barrett.


Science Translational Medicine | 2016

α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease

Roberto Di Maio; Paul J. Barrett; Eric K. Hoffman; Caitlyn W. Barrett; Alevtina Zharikov; Anupom Borah; Xiaoping Hu; Jennifer McCoy; Charleen T. Chu; Edward A. Burton; Teresa G. Hastings; J. Timothy Greenamyre

The Parkinson’s disease–associated protein α-synuclein binds to the mitochondrial protein import receptor TOM20, which causes downstream impairment of mitochondrial function. α-Synuclein disrupts the mitochondrial protein import business α-Synuclein accumulation and mitochondrial dysfunction are central to the pathogenesis of most forms of Parkinson’s disease and appear to intersect, but how the two are related to each other has remained elusive. Now, Di Maio and colleagues report that specific forms of wild-type α-synuclein, such as oligomeric and dopamine-modified forms, but not the monomeric or fibrillar forms, bind with high affinity to the mitochondrial receptor TOM20. This results in impaired import of proteins required for mitochondrial function and leads to senescence of mitochondria, which show reduced respiration and increased production of reactive oxygen species. This study also highlights potential ways to prevent this deleterious interaction and its downstream consequences. α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson’s disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery. This binding prevented the interaction of TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import. Consequently, there were deficient mitochondrial respiration, enhanced production of reactive oxygen species, and loss of mitochondrial membrane potential. Examination of postmortem brain tissue from PD patients revealed an aberrant α-synuclein–TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease. Modest knockdown of endogenous α-synuclein was sufficient to maintain mitochondrial protein import in an in vivo model of PD. Furthermore, in in vitro systems, overexpression of TOM20 or a mitochondrial targeting signal peptide had beneficial effects and preserved mitochondrial protein import. This study characterizes a pathogenic mechanism in PD, identifies toxic species of wild-type α-synuclein, and reveals potential new therapeutic strategies for neuroprotection.


Cancer Research | 2013

Tumor Suppressor Function of the Plasma Glutathione Peroxidase Gpx3 in Colitis-Associated Carcinoma

Caitlyn W. Barrett; Wei Ning; Xi Chen; Jesse J. Smith; Mary Kay Washington; Kristina E. Hill; Lori A. Coburn; Richard M. Peek; Rupesh Chaturvedi; Keith T. Wilson; Raymond F. Burk; Christopher S. Williams

The glutathione peroxidases, a family of selenocysteine-containing redox enzymes, play pivotal roles in balancing the signaling, immunomodulatory, and deleterious effects of reactive oxygen species (ROS). The glutathione peroxidase GPX3 is the only extracellular member of this family, suggesting it may defend cells against ROS in the extracellular environment. Notably, GPX3 hypermethylation and underexpression occur commonly in prostate, gastric, cervical, thyroid, and colon cancers. We took a reverse genetics approach to investigate whether GPX3 would augment inflammatory colonic tumorigenesis, a process characterized by oxidative stress and inflammation, comparing Gpx3(-/-) mice in an established two-stage model of inflammatory colon carcinogenesis. Gpx3-deficient mice exhibited an increased tumor number, though not size, along with a higher degree of dysplasia. In addition, they exhibited increased inflammation with redistribution toward protumorigenic M2 macrophage subsets, increased proliferation, hyperactive WNT signaling, and increased DNA damage. To determine the impact of acute gene loss in an established colon cancer line, we silenced GPX3 in human Caco2 cells, resulting in increased ROS production, DNA damage and apoptosis in response to oxidative stress, combined with decreased contact-independent growth. Taken together, our results suggested an immunomodulatory role for GPX3 that limits the development of colitis-associated carcinoma.


PLOS ONE | 2013

Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM/DSS-induced tumorigenesis.

Caitlyn W. Barrett; Kshipra Singh; Amy K. Motley; Mary K. Lintel; Elena Matafonova; Amber Bradley; Wei Ning; Shenika Poindexter; Bobak Parang; Vishruth K. Reddy; Rupesh Chaturvedi; Barbara Fingleton; Mary Kay Washington; Keith T. Wilson; Sean S. Davies; Kristina E. Hill; Raymond F. Burk; Christopher S. Williams

Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.


Journal of Clinical Investigation | 2011

BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma

Christopher S. Williams; Baolin Zhang; J. Joshua Smith; Ashwath Jayagopal; Caitlyn W. Barrett; Christopher J. Pino; Patricia K. Russ; S.-H. Presley; DunFa Peng; Daniel O. Rosenblatt; Frederick R. Haselton; Jin-Long Yang; M. Kay Washington; Xi Chen; Steven Eschrich; Timothy J. Yeatman; Wael El-Rifai; R. Daniel Beauchamp; Min S. Chang

The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.


Journal of Clinical Investigation | 2015

Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage

Caitlyn W. Barrett; Vishruth K. Reddy; Sarah P. Short; Amy K. Motley; Mary K. Lintel; Amber Bradley; Tanner J. Freeman; Jefferson Vallance; Wei Ning; Bobak Parang; Shenika Poindexter; Barbara Fingleton; Xi Chen; Mary Kay Washington; Keith T. Wilson; Noah F. Shroyer; Kristina E. Hill; Raymond F. Burk; Christopher S. Williams

Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions.


Cancer Research | 2011

MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model.

Caitlyn W. Barrett; Barbara Fingleton; Amanda D. Williams; Wei Ning; Melissa A. Fischer; Mary Kay Washington; Rupesh Chaturvedi; Keith T. Wilson; Scott W. Hiebert; Christopher S. Williams

Myeloid Translocation Gene, Related-1 (MTGR1) CBFA2T2 is a member of the Myeloid Translocation Gene (MTG) family of transcriptional corepressors. The remaining two family members, MTG8 (RUNX1T1) and MTG16 (CBFA2T3) are identified as targets of chromosomal translocations in acute myeloid leukemia (AML). Mtgr1(-/-) mice have defects in intestinal lineage allocation and wound healing. Moreover, these mice show signs of impaired intestinal stem cell function. Based on these phenotypes, we hypothesized that MTGR1 may influence tumorigenesis arising in an inflammatory background. We report that Mtgr1(-/-) mice were protected from tumorigenesis when injected with azoxymethane (AOM) and then subjected to repeated cycles of dextran sodium sulfate (DSS). Tumor cell proliferation was comparable, but Mtgr1(-/-) tumors had significantly higher apoptosis rates. These phenotypes were dependent on epithelial injury, the resultant inflammation, or a combination of both as there was no difference in aberrant crypt foci (ACF) or tumor burden when animals were treated with AOM as the sole agent. Gene expression analysis indicated that Mtgr1(-/-) tumors had significant upregulation of inflammatory networks, and immunohistochemistry (IHC) for immune cell subsets revealed a marked multilineage increase in infiltrates, consisting predominately of CD3(+) and natural killer T (NKT) cells as well as macrophages. Transplantation of wild type (WT) bone marrow into Mtgr1(-/-) mice, and the reciprocal transplant, did not alter the phenotype, ruling out an MTGR1 hematopoietic cell-autonomous mechanism. Our findings indicate that MTGR1 is required for efficient inflammatory carcinogenesis in this model, and implicate its dysfunction in colitis-associated carcinoma. This represents the first report functionally linking MTGR1 to intestinal tumorigenesis.


PLOS ONE | 2012

Kaiso Directs the Transcriptional Corepressor MTG16 to the Kaiso Binding Site in Target Promoters

Caitlyn W. Barrett; J. Joshua Smith; Lauren C. Lu; Nicholas O. Markham; Kristy R. Stengel; Sarah P. Short; Baolin Zhang; Aubrey Hunt; Barbara Fingleton; Robert H. Carnahan; Michael E. Engel; Xi Chen; R. Daniel Beauchamp; Keith T. Wilson; Scott W. Hiebert; Albert B. Reynolds; Christopher S. Williams

Myeloid translocation genes (MTGs) are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB) family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso), like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the ApcMin mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS) and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin). Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope of co-repressor functions for the MTG family, suggesting coordinate regulation of transcription by Kaiso/MTG complexes in cancer.


Cellular and Molecular Life Sciences | 2017

Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut.

Caitlyn W. Barrett; Sarah P. Short; Christopher S. Williams

Selenium is an essential micronutrient that is incorporated into at least 25 selenoproteins encoded by the human genome, many of which serve antioxidant functions. Because patients with inflammatory bowel disease (IBD) demonstrate nutritional deficiencies and are at increased risk for colon cancer due to heightened inflammation and oxidative stress, selenoprotein dysfunction may contribute to disease progression. Over the years, numerous studies have analyzed the effects of selenoprotein loss and shown that they are important mediators of intestinal inflammation and carcinogenesis. In particular, recent work has focused on the role of selenoprotein P (SEPP1), a major selenium transport protein which also has endogenous antioxidant function. These experiments determined SEPP1 loss altered immune and epithelial cellular function in a murine model of colitis-associated carcinoma. Here, we discuss the current knowledge of SEPP1 and selenoprotein function in the setting of IBD, colitis, and inflammatory tumorigenesis.


Gut | 2017

BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis

Bobak Parang; Andrew M. Kaz; Caitlyn W. Barrett; Sarah P. Short; Wei Ning; Cody Keating; Mukul K. Mittal; Rishi D. Naik; Mary Kay Washington; Frank Revetta; J. Joshua Smith; Xi Chen; Keith T. Wilson; Thomas Brand; David M. Bader; William P. Tansey; Ru Chen; Teresa A. Brentnall; William M. Grady; Christopher S. Williams

Objective Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. Design We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves−/− and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. Results BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves−/− mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves−/− tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. Conclusion Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.


Methods of Molecular Biology | 2016

AOM/DSS Model of Colitis-Associated Cancer

Bobak Parang; Caitlyn W. Barrett; Christopher S. Williams

Our understanding of colitis-associated carcinoma (CAC) has benefited substantially from mouse models that faithfully recapitulate human CAC. Chemical models, in particular, have enabled fast and efficient analysis of genetic and environmental modulators of CAC without the added requirement of time-intensive genetic crossings. Here we describe the Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) mouse model of inflammatory colorectal cancer.

Collaboration


Dive into the Caitlyn W. Barrett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith T. Wilson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wei Ning

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Washington

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge