Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caixia Gao is active.

Publication


Featured researches published by Caixia Gao.


Nature Biotechnology | 2013

Targeted genome modification of crop plants using a CRISPR-Cas system

Qiwei Shan; Yanpeng Wang; Jun Li; Yi Zhang; Kunling Chen; Zhen Liang; Kang Zhang; Jinxing Liu; Jianzhong Jeff Xi; Jin-Long Qiu; Caixia Gao

1. Jinek, M. et al. Science 337, 816–821 (2012). 2. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013). 3. Cong, L. et al. Science 339, 819–823 (2013). 4. Mali, P. et al. Science 339, 823–826 (2013). 5. Hwang, W.Y. et al. Nat. Biotechnol. 31, 227–229 (2013). 6. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. Nat. Biotechnol. 31, 233–239 (2013). 7. Wang, H. et al. Cell 153, 910–918 (2013). 8. Geurts, A.M. et al. Science 325, 433 (2009). 9. Tong, C., Li, P., Wu, N.L., Yan, Y. & Ying, Q.L. Nature 467, 211–213 (2010). 10. Tesson, L. et al. Nat. Biotechnol. 29, 695–696 (2011). 11. Wu, H. & Zhang, Y. Genes Dev. 25, 2436–2452 (2011). 12. Gu, T.P. et al. Nature 477, 606–610 (2011). 13. Dawlaty, M.M. et al. Dev. Cell 24, 310–323 (2013). revision process of this work, an independent study reported the simultaneous generation of multiple mutations in mice7. Our work, together with the mice work, demonstrates that it should be feasible to produce genetargeted models in rodents and probably other mammalian species using the CRISPRCas systems.


Nature Biotechnology | 2014

Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew

Yanpeng Wang; Xi Cheng; Qiwei Shan; Yi Zhang; Jinxing Liu; Caixia Gao; Jin-Long Qiu

Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator–like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.


Journal of Genetics and Genomics | 2014

Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System

Zhen Liang; Kang Zhang; Kunling Chen; Caixia Gao

Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize.


Nature Protocols | 2014

Genome editing in rice and wheat using the CRISPR/Cas system.

Qiwei Shan; Yanpeng Wang; Jun Li; Caixia Gao

Targeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes. The simplicity of the cloning strategy and the few limitations on potential target sites make the CRISPR/Cas system very appealing. Here we describe a stepwise protocol for the selection of target sites, as well as the design, construction, verification and use of sgRNAs for sequence-specific CRISPR/Cas-mediated mutagenesis and gene targeting in rice and wheat. The CRISPR/Cas system provides a straightforward method for rapid gene targeting within 1–2 weeks in protoplasts, and mutated rice plants can be generated within 13–17 weeks.


Plant Physiology | 2011

Brachypodium as a model for the grasses: Today and the future

Jelena Brkljacic; Erich Grotewold; Randy Scholl; Todd C. Mockler; David F. Garvin; Philippe Vain; Thomas P. Brutnell; Richard Sibout; Michael W. Bevan; Hikmet Budak; Ana L. Caicedo; Caixia Gao; Yong-Qiang Q. Gu; Samuel P. Hazen; Ben F. Holt; Shin-Young Hong; Mark C. Jordan; Antonio J. Manzaneda; Thomas Mitchell-Olds; Keiichi Mochida; Luis A. J. Mur; Chung-Mo Park; John C. Sedbrook; Michelle Watt; Shao Jian Zheng; John P. Vogel

Over the past several years, Brachypodium distachyon (Brachypodium) has emerged as a tractable model system to study biological questions relevant to the grasses. To place its relevance in the larger context of plant biology, we outline here the expanding adoption of Brachypodium as a model grass and compare this to the early history of another plant model, Arabidopsis thaliana. In this context, Brachypodium has followed an accelerated path in which the development of genomic resources, most notably a whole genome sequence, occurred concurrently with the generation of other experimental tools (e.g. highly efficient transformation and large collections of natural accessions). This update provides a snapshot of available and upcoming Brachypodium resources and an overview of the community including the trajectory of Brachypodium as a model grass.


PLOS Biology | 2014

Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges

Daniel F. Voytas; Caixia Gao

As Caixia Gao and Dan Voytas explain, new techniques make it possible to precisely edit plant genomic DNA, providing opportunities to create crop varieties that will help meet the challenges facing agriculture, including an expanding world population and environmental change.


Molecular Plant | 2013

Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs

Qiwei Shan; Yanpeng Wang; Kunling Chen; Zhen Liang; Jun Li; Yi Zhang; Kang Zhang; Jinxing Liu; Daniel F. Voytas; Xuelian Zheng; Yong Zhang; Caixia Gao

In the past few years, the use of sequence-specific nucleases for efficient targeted mutagenesis has provided plant biologists with a powerful new approach for understanding gene function and developing new traits. These nucleases create DNA double-strand breaks at chromosomal targeted sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. NHEJ is often imprecise and can introduce mutations at target sites resulting in the loss of gene function. In contrast, HR uses a homologous DNA template for repair and can be employed to create site-specific sequence modifications or targeted insertions (Moynahan and Jasin, 2010).


Nature Communications | 2016

Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

Yi Zhang; Zhen Liang; Yuan Zong; Yanpeng Wang; Jinxing Liu; Kunling Chen; Jin-Long Qiu; Caixia Gao

Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research.


Nature Genetics | 2015

The OsSPL16 - GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality

Shaokui Wang; Shan Li; Qian Liu; Kun Wu; Jianqing Zhang; Shuansuo Wang; Yi Wang; Xiangbin Chen; Yi Zhang; Caixia Gao; Feng Wang; Haixiang Huang; Xiangdong Fu

The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7TFA allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.


Nature Communications | 2017

Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes

Zhen Liang; Kunling Chen; Tingdong Li; Yi Zhang; Yanpeng Wang; Qian Zhao; Jinxing Liu; Huawei Zhang; Cuimin Liu; Yidong Ran; Caixia Gao

Substantial efforts are being made to optimize the CRISPR/Cas9 system for precision crop breeding. The avoidance of transgene integration and reduction of off-target mutations are the most important targets for optimization. Here, we describe an efficient genome editing method for bread wheat using CRISPR/Cas9 ribonucleoproteins (RNPs). Starting from RNP preparation, the whole protocol takes only seven to nine weeks, with four to five independent mutants produced from 100 immature wheat embryos. Deep sequencing reveals that the chance of off-target mutations in wheat cells is much lower in RNP mediated genome editing than in editing with CRISPR/Cas9 DNA. Consistent with this finding, no off-target mutations are detected in the mutant plants. Because no foreign DNA is used in CRISPR/Cas9 RNP mediated genome editing, the mutants obtained are completely transgene free. This method may be widely applicable for producing genome edited crop plants and has a good prospect of being commercialized.

Collaboration


Dive into the Caixia Gao's collaboration.

Top Co-Authors

Avatar

Kunling Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanpeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinxing Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Liang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Huawei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiwei Shan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Long Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuan Zong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge