Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caixia Lan is active.

Publication


Featured researches published by Caixia Lan.


Nature Genetics | 2015

A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat

John W Moore; Sybil A. Herrera-Foessel; Caixia Lan; Wendelin Schnippenkoetter; Michael A. Ayliffe; Julio Huerta-Espino; Morten Lillemo; Libby Viccars; Ricky J. Milne; Sambasivam Periyannan; Xiuying Kong; Wolfgang Spielmeyer; Mark J. Talbot; Harbans Bariana; John W. Patrick; Peter N. Dodds; Ravi P. Singh; Evans S. Lagudah

As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.


Phytopathology | 2010

Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese Landrace Pingyuan 50 through bulked segregant analysis

Caixia Lan; Shanshan Liang; Xiangchun Zhou; Gang Zhou; Qinglin Lu; Xianchun Xia; Zhonghu He

ABSTRACT Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars with adult-plant resistance (APR) is an effective approach for the control of the disease. In this study, 540 simple sequence repeat markers were screened to map quantitative trait loci (QTL) for APR to stripe rust in a doubled haploid (DH) population of 137 lines derived from the cross Pingyuan 50 x Mingxian 169. The DH lines were planted in randomized complete blocks with three replicates in Gansu and Sichuan provinces during the 2005-06, 2006-07, and 2007-08 cropping seasons, providing data for four environments. Artificial inoculations were carried out in Gansu and Sichuan with the prevalent Chinese race CYR32. Broad-sense heritability of resistance to stripe rust for maximum disease severity was 0.91, based on the mean value averaged across four environments. Inclusive composite interval mapping detected three QTL for APR to stripe rust on chromosomes 2BS, 5AL, and 6BS, designated QYr.caas-2BS, QYr.caas-5AL, and QYr.caas-6BS, respectively, separately explaining from 4.5 to 19.9% of the phenotypic variation. QYr.caas-5AL, different from QTL previously reported, was flanked by microsatellite markers Xwmc410 and Xbarc261, and accounted for 5.0 to 19.9% of phenotypic variance. Molecular markers closely linked to the QTL could be used in marker-assisted selection for APR to stripe rust in wheat breeding programs.


Molecular Breeding | 2014

QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1

Caixia Lan; Garry M. Rosewarne; Ravi P. Singh; S. A. Herrera-Foessel; Julio Huerta-Espino; Bhoja R. Basnet; Yelun Zhang; Ennian Yang

Abstract Growing resistant wheat varieties is a key method of controlling two important wheat diseases, leaf rust and stripe rust. We analyzed quantitative trait loci (QTL) to investigate adult plant resistance (APR) to these rusts, using 141 F5 RILs derived from the cross ‘Avocet-YrA/Francolin#1’. Phenotyping of leaf rust resistance was conducted during two seasons at Ciudad Obregon, Mexico, whereas stripe rust was evaluated for two seasons in Toluca, Mexico, and one season in Chengdu, China. The genetic map was constructed with 581 markers, including diversity arrays technology and simple sequence repeat. Significant loci for reducing leaf rust severity were designated QLr.cim-1BL, QLr.cim-3BS.1, QLr.cim-3DC, and QLr.cim-7DS. The six QTL that reduced stripe rust severity were designated QYr.cim-1BL, QYr.cim-2BS, QYr.cim-2DS, QYr.cim-3BS.2, QYr.cim-5AL, and QYr.cim-6AL. All loci were conferred by Francolin#1, with the exception of QYr.cim-2DS, QYr.cim-5AL, and QYr.cim-6AL, which were derived from Avocet-YrA. Closely linked markers indicated that the 1BL locus was the pleiotropic APR gene Lr46/Yr29. QYr.cim-2BS was a seedling resistance gene designated as YrF that conferred intermediate seedling reactions and moderate resistance at the adult plant stage in both Mexican and Chinese environments. Significant additive interactions were detected between the six QTL for stripe rust, but not between the four QTL for leaf rust. Furthermore, we detected two new APR loci for leaf rust in common wheat: QLr.cim-3BS.1 and QLr.cim-7DS.


Theoretical and Applied Genetics | 2016

Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat

Ruiqi Zhang; Bingxiao Sun; Juan Chen; Aizhong Cao; Liping Xing; Yigao Feng; Caixia Lan; Peidu Chen

Key messagePowdery mildew resistance gene Pm55 was physically mapped to chromosome arm 5VS FL 0.60–0.80 of Dasypyrum villosum. Pm55 is present in T5VS·5AL and T5VS·5DL translocations, which should be valuable resources for wheat improvement.AbstractPowdery mildew caused by Blumeria graminis f. sp. tritici is a major wheat disease worldwide. Exploiting novel genes effective against powdery mildew from wild relatives of wheat is a promising strategy for controlling this disease. To identify novel resistance genes for powdery mildew from Dasypyrum villosum, a wild wheat relative, we evaluated a set of Chinese Spring-D. villosum disomic addition and whole-arm translocation lines for reactions to powdery mildew. Based on the evaluation data, we concluded that the D. villosum chromosome 5V controls post-seedling resistance to powdery mildew. Subsequently, three introgression lines were developed and confirmed by molecular and cytogenetic analysis following ionizing radiation of the pollen of a Chinese Spring-D. villosum 5V disomic addition line. A homozygous T5VS·5AL translocation line (NAU421) with good plant vigor and full fertility was further characterized using sequential genomic in situ hybridization, C-banding, and EST-STS marker analysis. A dominant gene permanently named Pm55 was located in chromosome bin 5VS 0.60–0.80 based on the responses to powdery mildew of all wheat-D. villosum 5V introgression lines evaluated at both seeding and adult stages. This study demonstrated that Pm55 conferred growth-stage and tissue-specific dependent resistance; therefore, it provides a novel resistance type for powdery mildew. The T5VS·5AL translocation line with additional softness loci Dina/Dinb of D. villosum provides a possibility of extending the range of grain textures to a super-soft category. Accordingly, this stock is a new source of resistance to powdery mildew and may be useful in both resistance mechanism studies and soft wheat improvement.


Frontiers in Plant Science | 2016

Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

Suchismita Mondal; Jessica Rutkoski; Govindan Velu; Pawan K. Singh; Leonardo A. Crespo-Herrera; Carlos Guzmán; Sridhar Bhavani; Caixia Lan; Xinyao He; Ravi P. Singh

Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.


Journal of Integrative Agriculture | 2014

Progress Towards Genetics and Breeding for Minor Genes Based Resistance to Ug99 and Other Rusts in CIMMYT High-Yielding Spring Wheat

Ravi P. Singh; S. A. Herrera-Foessel; Julio Huerta-Espino; Sukhwinder Singh; Sridhar Bhavani; Caixia Lan; Bhoja R. Basnet

Wheat rusts continue to cause significant losses worldwide despite major efforts given to their genetic control. This is due to frequent evolution and selection of virulence in pathogen overcoming the deployed race-specific resistance genes. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach being implemented at CIMMYT is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, the APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4 or 5 minor genes usually result in “near-immunity” or a high level of resistance. Although only a few APR genes are catalogued, various APR QTLs are now known and could lead to further characterization of additional genes. Four characterized genes have pleiotropic effects in conferring partial APR to all 3 rusts and powdery mildew, thus simplifying the task of breeding wheat varieties that are resistant to multiple diseases. Significant progress was made recently in developing high-yielding wheat germplasm that possesses high levels of APR to all three rusts by implementing a Mexico-Kenya shuttle breeding scheme. Parents with APR to Ug99 were hybridized with high-yielding parents that had adequate to high levels of APR to leaf rust and yellow rust. Segregating populations and advanced lines from these crosses were selected under high rust pressures in Mexico (leaf rust and yellow rust) and Kenya (Ug99 stem rust and yellow rust) to identify high-yielding progenies that possess high to adequate APR to all three rusts. International distribution of these high-yielding wheats is underway through CIMMYT international yield trials and screening nurseries. It is expected that several wheat varieties with APR to three rusts will be released and grown in various countries in the near-future that will allow determining the durability of resistance.


Plant Disease | 2014

Lr72 Confers Resistance to Leaf Rust in Durum Wheat Cultivar Atil C2000

S. A. Herrera-Foessel; Julio Huerta-Espino; V. Calvo-Salazar; Caixia Lan; Ravi P. Singh

Leaf rust, caused by Puccinia triticina (Pt), has become a globally important disease for durum wheat (Triticum turgidum subsp. durum) since the detection of race group BBG/BN, which renders ineffective a widely deployed seedling resistance gene present in several popular cultivars including Mexican cultivars Altar C84 and Atil C2000. The resistance gene continues to play a key role in protecting durum wheat against bread wheat-predominant races since virulence among this race group has not been found. We developed F3 and F5 mapping populations from a cross between Atil C2000 and the susceptible line Atred #1. Resistance was characterized by greenhouse seedling tests using three Pt races. Segregation tests indicated the presence of a single gene, which was mapped to the distal end of 7BS by bulk segregant analysis. The closest marker, wmc606, was located 5.5 cM proximal to the gene. No known leaf rust resistance genes are reported in this region; this gene was therefore designated as Lr72. The presence of Lr72 was further investigated in greenhouse tests in a collection of durum wheat using 13 Pt races. It was concluded that at least one additional gene protects durum wheat from bread wheat-predominant Pt races.


Plant Disease | 2017

Identification and mapping of adult plant resistance loci to leaf rust and stripe rust in common wheat cultivar kundan

Y. Ren; Ravi P. Singh; Bhoja R. Basnet; Caixia Lan; Julio Huerta-Espino; Evans Lagudah; L. J. Ponce-Molina

Leaf rust (LR) and stripe rust (YR) are important diseases of wheat worldwide. We used 148 recombinant inbred lines (RIL) from the cross of Avocet × Kundan for determining and mapping the genetic basis of adult plant resistance (APR) loci. The population was phenotyped LR and YR for three seasons in field trials conducted in Mexico and genotyped with the diversity arrays technology sequencing (DArT-Seq) and simple sequence repeat markers. The final genetic map was constructed using 2,937 polymorphic markers with an average distance of 1.29 centimorgans between markers. Inclusive composite interval mapping identified two co-located APR quantitative trait loci (QTL) for LR and YR, two LR QTL, and three YR QTL. The co-located resistance QTL on chromosome 1BL corresponded to the pleiotropic APR gene Lr46/Yr29. QLr.cim-2BL, QYr.cim-2AL, and QYr.cim-5AS could be identified as new resistance loci in this population. Lr46/Yr29 contributed 49.5 to 65.1 and 49.2 to 66.1% of LR and YR variations, respectively. The additive interaction between detected QTL showed that LR severities for RIL combining four QTL ranged between 5.3 and 25.8%, whereas the lowest YR severities were for RIL carrying QTL on chromosomes 1BL + 2AL + 6AL. The high-density DArT-Seq markers across chromosomes can be used in fine mapping of the targeted loci and development SNP markers.


Plant Science | 2016

Genome wide association mapping of stripe rust resistance in Afghan wheat landraces.

Alagu Manickavelu; Reem Joukhadar; Abdulqader Jighly; Caixia Lan; Julio Huerta-Espino; Ahmad Shah Stanikzai; Andrzej Kilian; Ravi P. Singh; Tomohiro Ban

Mining of new genetic resources is of paramount importance to combat the alarming spread of stripe rust disease and breakdown of major resistance genes in wheat. We conducted a genome wide association study on 352 un-utilized Afghan wheat landraces against stripe rust resistance in eight locations. High level of disease variation was observed among locations and a core-set of germplasm showed consistence performance. Linkage disequilibrium (LD) decayed rapidly (R2≈0.16 at 0cM) due to germplasm peerless diversity. The mixed linear model resulted in ten marker-trait associations (MTAs) across all environments representing five QTL. The extensively short LD blocks required us to repeat the analysis with less diverse subset of 220 landraces in which R2 decayed below 0.2 at 0.3cM. The subset GWAS resulted in 36 MTAs clustered in nine QTL. The subset analysis validated three QTL previously detected in the full list analysis. Overall, the study revealed that stripe rust epidemics in the geographical origin of this germplasm through time have permitted for selecting novel resistance loci.


Theoretical and Applied Genetics | 2018

Development and characterization of a complete set of Triticum aestivum–Roegneria ciliaris disomic addition lines

Lingna Kong; Xinying Song; Jin Xiao; Haojie Sun; Keli Dai; Caixia Lan; Pawan K. Singh; Chunxia Yuan; Shouzhong Zhang; Ravi P. Singh; Haiyan Wang; Xiue Wang

Key messageA complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined.AbstractWild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome ScScYcYc), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from Sc and Yc, we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA)10] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Yc, DA5Yc and DA6Sc had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.

Collaboration


Dive into the Caixia Lan's collaboration.

Top Co-Authors

Avatar

Ravi P. Singh

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Julio Huerta-Espino

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

S. A. Herrera-Foessel

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Bhoja R. Basnet

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Sridhar Bhavani

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Evans S. Lagudah

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Garry M. Rosewarne

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Pawan K. Singh

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Zhonghu He

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Mandeep S. Randhawa

International Maize and Wheat Improvement Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge