Caleb B. Bell
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caleb B. Bell.
Nature | 2013
Shaun D. Wong; Martin Srnec; Megan L. Matthews; Lei V. Liu; Yeonju Kwak; Kiyoung Park; Caleb B. Bell; E. Ercan Alp; Jiyong Zhao; Yoshitaka Yoda; Shinji Kitao; Makoto Seto; Carsten Krebs; J. Martin Bollinger; Edward I. Solomon
SUMMARY Mononuclear non-haem iron (NHFe) enzymes catalyse a wide variety of oxidative reactions including halogenation, hydroxylation, ring closure, desaturation, and aromatic ring cleavage. These are highly important for mammalian somatic processes such as phenylalanine metabolism, production of neurotransmitters, hypoxic response, and the biosynthesis of natural products.1–3 The key reactive intermediate in the catalytic cycles of these enzymes is an S = 2 FeIV=O species, which has been trapped for a number of NHFe enzymes4–8 including the halogenase SyrB2, the subject of this study. Computational studies to understand the reactivity of the enzymatic NHFe FeIV=O intermediate9–13 are limited in applicability due to the paucity of experimental knowledge regarding its geometric and electronic structures, which determine its reactivity. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes of Fe on the nature of the FeIV=O active site.14–16 Here we present the first NRVS structural characterisation of the reactive FeIV=O intermediate of a NHFe enzyme. This FeIV=O intermediate reacts via an initial H-atom abstraction step, with its subsquent halogenation (native) or hydroxylation (non-native) rebound reactivity being dependent on the substrate.17 A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate is able to direct the orientation of the FeIV=O intermediate, presenting specific frontier molecular orbitals (FMOs) which can activate the selective halogenation versus hydroxylation reactivity.Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(iv)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(iv)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(iv)=O active site. Here we present NRVS structural characterization of the reactive Fe(iv)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(iv)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.
Angewandte Chemie | 2011
Shaun D. Wong; Caleb B. Bell; Lei V. Liu; Yeonju Kwak; Jason England; E. Ercan Alp; Jiyong Zhao; Lawrence Que; Edward I. Solomon
Mononuclear non-heme iron (NHFe) enzymes catalyze a number of key biological reactions including hydroxylation, desaturation, ring closure and halogenation.[1-3] The reactive intermediate that carries out many of the C–H bond activations is an S = 2 FeIV=O species that has been observed and characterized in several enzyme systems.[3-5] Synthetic efforts have yielded FeIV=O model complexes that exhibit an S = 1 ground state[6, 7] in all but three cases: (H2O)5FeIV=O[8], (H3buea)FeIV=O[9] and (TMG3tren)FeIV=O (1).[10] 1 has an FeIV=O unit ligated by TMG3tren in a C3ν trigonal bipyramidal geometry (Figure 1A), and an S = 2 ground state replicating that of enzyme intermediates.[10, 11] 1 is reactive in oxo-atom transfer and H-atom abstraction, but in the latter it is only as reactive as the approximately-C4v S = 1 (N4Py)FeIV=O (2, Figure 1B) complex where both have the same reaction rate with 1,4-cyclohexadiene (CHD).[10] Original studies from our group showed that whereas S = 1 reaction coordinates only have a □-attack pathway, involving the β-d□* orbital, available for electrophilic reactivity, S = 2 systems are predicted to possess an additional -attack pathway involving the ⟨-dz2 orbital that is lowered in energy due to spin-polarization.[12, 13] This has recently been referred to as an exchange enhancement.[14] In this study, we utilize Nuclear Resonance Vibrational Spectroscopy (NRVS) to obtain ground-state vibrational data on 1 for comparison to 2[15] and, through correlations to DFT calculations, to understand the observed similar reactivities of 1 (S = 2) and 2 (S = 1). These studies define the steric and intrinsic electronic contributions to the reaction barriers and establish that both the S = 1 and S = 2 surfaces have significant steric contributions due to the different directionalities of substrate approach and thus similar intrinsic reactivities.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Lei V. Liu; Caleb B. Bell; Shaun D. Wong; Samuel A. Wilson; Yeonju Kwak; Marina S. Chow; Jiyong Zhao; Keith O. Hodgson; Britt Hedman; Edward I. Solomon
Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin FeIII peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4′ hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of FeIIIBLM and ABLM as (BLM)FeIII─OH and (BLM)FeIII(η1─OOH) species, respectively. The NRVS spectra of FeIIIBLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─Nax transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.
Angewandte Chemie | 2008
Caleb B. Bell; Shaun D. Wong; Yuming Xiao; Eric J. Klinker; Matt C. Smith; Jan Uwe Rohde; Lawrence Que; Stephen P. Cramer; Edward I. Solomon
Fe{sup IV} = O biomimetic model complexes (see picture, Fe green, O red, N blue, C black) have been characterized using nuclear vibrational resonance spectroscopy. Systematic trends in the low-energy region reflect equatorial and axial bonding differences that relate to differences in reactivity. These trends have been computationally extended to predict the spectra of putative Fe{sup IV} = O intermediates in non-heme iron enzymes.
Biochemistry | 2009
Caleb B. Bell; Jennifer R. Calhoun; Elena Bobyr; Pin-pin Wei; Britt Hedman; Keith O. Hodgson; William F. DeGrado; Edward I. Solomon
DFsc is a single chain de novo designed four-helix bundle peptide that mimics the core protein fold and primary ligand set of various binuclear non-heme iron enzymes. DFsc and the E11D, Y51L, and Y18F single amino acid variants have been studied using a combination of near-IR circular dichroism (CD), magnetic circular dichroism (MCD), variable temperature variable field MCD (VTVH MCD), and X-ray absorption (XAS) spectroscopies. The biferrous sites are all weakly antiferromagnetically coupled with mu-1,3 carboxylate bridges and one 4-coordinate and one 5-coordinate Fe, very similar to the active site of class I ribonucleotide reductase (R2) providing open coordination positions on both irons for dioxygen to bridge. From perturbations of the MCD and VTVH MCD the iron proximal to Y51 can be assigned as the 4-coordinate center, and XAS results show that Y51 is not bound to this iron in the reduced state. The two open coordination positions on one iron in the biferrous state would become occupied by dioxygen and Y51 along the O(2) reaction coordinate. Subsequent binding of Y51 functions as an internal spectral probe of the O(2) reaction and as a proton source that would promote loss of H(2)O(2). Coordination by a ligand that functions as a proton source could be a structural mechanism used by natural binuclear iron enzymes to drive their reactions past peroxo biferric level intermediates.
Journal of the American Chemical Society | 2013
Yeonju Kwak; Wei Jiang; Laura M. K. Dassama; Kiyoung Park; Caleb B. Bell; Lei V. Liu; Shaun D. Wong; Makina Saito; Yasuhiro Kobayashi; Shinji Kitao; Makoto Seto; Yoshitaka Yoda; E. Ercan Alp; Jiyong Zhao; J. Martin Bollinger; Carsten Krebs; Edward I. Solomon
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a μ-oxo, μ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.
PLOS ONE | 2012
Ane B. Tomter; Giorgio Zoppellaro; Caleb B. Bell; Anne-Laure Barra; Niels H. Andersen; Edward I. Solomon; K. Kristoffer Andersson
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g 1-value of 2.0090 for the tyrosyl radical was extracted. This g 1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g 1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity.
Biochemistry | 2008
Ane B. Tomter; Caleb B. Bell; Åsmund K. Røhr; K. Kristoffer Andersson; Edward I. Solomon
The rate limiting step in DNA biosynthesis is the reduction of ribonucleotides to form the corresponding deoxyribonucleotides. This reaction is catalyzed by ribonucleotide reductases (RNRs) and is an attractive target against rapidly proliferating pathogens. Class I RNRs are binuclear non-heme iron enzymes and can be further divided into subclasses. Class Ia is found in many organisms, including humans, while class Ib has only been found in bacteria, notably some pathogens. Both Bacillus anthracis and Bacillus cereus encode class Ib RNRs with over 98% sequence identity. The geometric and electronic structure of the B. cereus diiron containing subunit (R2F) has been characterized by a combination of circular dichroism, magnetic circular dichroism (MCD) and variable temperature variable field MCD and is compared to class Ia RNRs. While crystallography has given several possible descriptions for the class Ib RNR biferrous site, the spectroscopically defined active site contains a 4-coordinate and a 5-coordinate Fe(II), weakly antiferromagnetically coupled via mu-1,3-carboxylate bridges. Class Ia biferrous sites are also antiferromagnetically coupled 4-coordinate and 5-coordinate Fe(II), however quantitatively differ from class Ib in bridging carboxylate conformation and tyrosine radical positioning relative to the diiron site. Additionally, the iron binding affinity in B. cereus RNR R2F is greater than class Ia RNR and provides the pathogen with a competitive advantage relative to host in physiological, iron-limited environments. These structural differences have potential for the development of selective drugs.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Kiyoung Park; Caleb B. Bell; Lei V. Liu; Dong Wang; Genqiang Xue; Yeonju Kwak; Shaun D. Wong; Kenneth M. Light; Jiyong Zhao; E. Ercan Alp; Yoshitaka Yoda; Makina Saito; Yasuhiro Kobayashi; Takehiro Ohta; Makoto Seto; Lawrence Que; Edward I. Solomon
High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model complexes. Low-frequency vibrational modes of these high-valent diiron complexes involving Fe motion have been observed and assigned. These are independent of Fe oxidation state and show a strong dependence on spin state. It is important to note that they are sensitive to the nature of the Fe2 core bridges and provide the basis for interpreting parallel nuclear resonance vibrational spectroscopy data on the high-valent oxo intermediates in the binuclear nonheme iron enzymes.
Journal of the American Chemical Society | 2017
Kiyoung Park; Ning Li; Yeonju Kwak; Martin Srnec; Caleb B. Bell; Lei V. Liu; Shaun D. Wong; Yoshitaka Yoda; Shinji Kitao; Makoto Seto; Michael Hu; Jiyong Zhao; Carsten Krebs; J. Martin Bollinger; Edward I. Solomon
Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.