Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caleb C. J. Zavitz is active.

Publication


Featured researches published by Caleb C. J. Zavitz.


Nature Medicine | 2013

Local proliferation dominates lesional macrophage accumulation in atherosclerosis

Clinton S. Robbins; Ingo Hilgendorf; Georg F. Weber; Igor Theurl; Yoshiko Iwamoto; Jose-Luiz Figueiredo; Rostic Gorbatov; Galina K. Sukhova; Louisa M.S. Gerhardt; David Smyth; Caleb C. J. Zavitz; Eric A. Shikatani; Michael Parsons; Nico van Rooijen; Herbert Y. Lin; Mansoor Husain; Peter Libby; Matthias Nahrendorf; Ralph Weissleder; Filip K. Swirski

During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.


Nature Immunology | 2016

Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth

Sherine Ensan; Angela Li; Rickvinder Besla; Norbert Degousee; Jake Cosme; Mark Roufaiel; Eric A. Shikatani; Mahmoud El-Maklizi; Jesse W. Williams; Lauren Robins; Cedric Li; Bonnie Lewis; Tae Jin Yun; Jun Seong Lee; Peter Wieghofer; Ramzi Khattar; Kaveh Farrokhi; John Byrne; Maral Ouzounian; Caleb C. J. Zavitz; Gary A. Levy; Carla M. T. Bauer; Peter Libby; Mansoor Husain; Filip K. Swirski; Cheolho Cheong; Marco Prinz; Ingo Hilgendorf; Gwendalyn J. Randolph; Slava Epelman

Resident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approaches, we show that arterial macrophages arise embryonically from CX3CR1+ precursors and postnatally from bone marrow–derived monocytes that colonize the tissue immediately after birth. In adulthood, proliferation (rather than monocyte recruitment) sustains arterial macrophages in the steady state and after severe depletion following sepsis. After infection, arterial macrophages return rapidly to functional homeostasis. Finally, survival of resident arterial macrophages depends on a CX3CR1-CX3CL1 axis within the vascular niche.


PLOS ONE | 2011

IL-1α/IL-1R1 Expression in Chronic Obstructive Pulmonary Disease and Mechanistic Relevance to Smoke-Induced Neutrophilia in Mice

Fernando Botelho; Carla M. T. Bauer; Donna K. Finch; Jake K. Nikota; Caleb C. J. Zavitz; Ashling Kelly; Kristen N. Lambert; Sian Piper; Martyn L. Foster; James J.P. Goldring; Jadwiga A. Wedzicha; Jennifer Bassett; Jonathan Bramson; Yoichiro Iwakura; Matthew A. Sleeman; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles; Martin R. Stämpfli

Background Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood. Methodology and Principal Findings The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation. Conclusions and Significance This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD.


American Journal of Respiratory and Critical Care Medicine | 2009

Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile.

Gordon J. Gaschler; Marko Skrtic; Caleb C. J. Zavitz; Maria Lindahl; Per-Ola Onnervik; Timothy F. Murphy; Sanjay Sethi; Martin R. Stämpfli

RATIONALE The pathogenesis of chronic obstructive pulmonary disease is associated with acute episodes of bacterial exacerbations. The most commonly isolated bacteria during episodes of exacerbation is nontypeable Haemophilus influenzae (NTHI). OBJECTIVES In this study, we investigated the in vivo consequences of cigarette smoke exposure on the inflammatory response to an NTHI challenge. METHODS C57BL/6 and BALB/c mice were exposed to cigarette smoke for 8 weeks and subsequently challenged intranasally with NTHI. MEASUREMENTS AND MAIN RESULTS We observed increased pulmonary inflammation and lung damage in cigarette smoke-exposed NTHI-challenged mice as compared with control NTHI-challenged mice. Furthermore, although NTHI challenge in control mice was marked by increases in tumor necrosis factor-alpha, IL-6, MIP-2, and KC/GROalpha, NTHI challenge in cigarette smoke-exposed mice led to a prominent up-regulation of a different subset of inflammatory mediators, most notably MCP-1, -3, and -5, IP-10, and MIP-1gamma. This skewed inflammatory mediator expression was also observed after ex vivo NTHI stimulation of alveolar macrophages, signifying their importance to this altered response. Importantly, corticosteroids attenuated inflammation after NTHI challenge in both cigarette smoke-exposed and control mice; however, this was associated with significantly increased bacterial burden. CONCLUSIONS Collectively, these data suggest that cigarette smoke exacerbates the inflammatory response to a bacterial challenge via skewed inflammatory mediator expression.


Journal of Immunology | 2007

Cigarette Smoke Impairs NK Cell-Dependent Tumor Immune Surveillance

Ling-Min Lu; Caleb C. J. Zavitz; Biao Chen; Sussan Kianpour; Yonghong Wan; Martin R. Stämpfli

In this study, we investigated the impact of cigarette smoke on tumor immune surveillance and its consequences to lung tumor burden in a murine lung metastasis model. Cigarette smoke exposure significantly increased the numbers of lung metastases following B16-MO5 melanoma challenge. This effect was reversible; we observed significantly fewer tumor nodules following smoking cessation. Using RAG2−/− and RAG2−/−γc−/− mice, we provide strong evidence that increased tumor incidence was NK cell dependent. Furthermore, we show that cigarette smoke suppressed NK activation and attenuated NK CTL activity, without apparent effect on activating or inhibitory receptor expression. Finally, activation of NK cells through bone marrow-derived dendritic cells conferred protection against lung metastases in smoke-exposed mice; however, protection was not as efficacious as in sham-exposed mice. To our knowledge, this is the first experimental evidence showing that cigarette smoke impairs NK cell-dependent tumor immune surveillance and that altered immunity is associated with increased tumor burden. Our findings suggest that altered innate immunity may contribute to the increased risk of cancer in smokers.


PLOS ONE | 2010

Treating Viral Exacerbations of Chronic Obstructive Pulmonary Disease: Insights from a Mouse Model of Cigarette Smoke and H1N1 Influenza Infection

Carla M. T. Bauer; Caleb C. J. Zavitz; Fernando Botelho; Kristen N. Lambert; Earl G. Brown; Karen L. Mossman; John D. Taylor; Martin R. Stämpfli

Background Chronic obstructive pulmonary disease is a progressive lung disease that is punctuated by periods of exacerbations (worsening of symptoms) that are attributable to viral infections. While rhinoviruses are most commonly isolated viruses during episodes of exacerbation, influenza viruses have the potential to become even more problematic with the increased likelihood of an epidemic. Methodology and Principal Findings This study examined the impact of current and potential pharmacological targets namely the systemic corticosteroid dexamethasone and the peroxisome proliferator-activated receptor- gamma agonist pioglitazone on the outcome of infection in smoke-exposed mice. C57BL/6 mice were exposed to room air or cigarette smoke for 4 days and subsequently inoculated with an H1N1 influenza A virus. Interventions were delivered daily during the course of infection. We show that smoke-exposed mice have an exacerbated inflammatory response following infection. While smoke exposure did not compromise viral clearance, precision cut lung slices from smoke-exposed mice showed greater expression of CC (MCP-1, -3), and CXC (KC, MIP-2, GCP-2) chemokines compared to controls when stimulated with a viral mimic or influenza A virus. While dexamethasone treatment partially attenuated the inflammatory response in the broncho-alveolar lavage of smoke-exposed, virally-infected animals, viral-induced neutrophilia was steroid insensitive. In contrast to controls, dexamethasone-treated smoke-exposed influenza-infected mice had a worsened health status. Pioglitazone treatment of virally-infected smoke-exposed mice proved more efficacious than the steroid intervention. Further mechanistic evaluation revealed that a deficiency in CCR2 did not improve the inflammatory outcome in smoke-exposed, virally-infected animals. Conclusions and Significance This animal model of cigarette smoke and H1N1 influenza infection demonstrates that smoke-exposed animals are differentially primed to respond to viral insult. While providing a platform to test pharmacological interventions, this model demonstrates that treating viral exacerbations with alternative anti-inflammatory drugs, such as PPAR-gamma agonists should be further explored since they showed greater efficacy than systemic corticosteroids.


Journal of Interferon and Cytokine Research | 2008

Cigarette smoke suppresses type I interferon-mediated antiviral immunity in lung fibroblast and epithelial cells.

Carla M. T. Bauer; Stephanie J. DeWitte-Orr; Kyle R. Hornby; Caleb C. J. Zavitz; Brian D. Lichty; Martin R. Stämpfli; Karen L. Mossman

The objective of this study was to investigate the impact of cigarette smoke on innate antiviral defense mechanisms; specifically, we examined the effects of cigarette smoke on the induction of type I interferon (IFN). We observed a dose-dependent decrease in the ability of human lung fibroblast and epithelial cells to elicit an antiviral response against a viral double-strand RNA (dsRNA) mimic, polyI:C, in the presence of cigarette smoke-conditioned medium (SCM). Mechanistically, SCM decreases the expression of IFN-stimulated gene 15 (ISG15) and IFN regulatory factor-7 (IRF-7) transcripts and suppresses the nuclear translocation of key transcription factors, nuclear factor-kappaB (NF-kappaB) and IRF-3, after polyI:C stimulation. Furthermore, we provide evidence that the intercellular defense strategy against viral infection is also impaired. We observed a decrease in the ability of fibroblasts to elicit an antiviral state in response to IFN-beta stimulation. This was associated with decreased nuclear translocation of phosphorylated Stat1 in response to IFN-beta treatment. The effects elicited by SCM are reversible and are almost entirely abrogated in the presence of an antioxidant, such as glutathione. Our findings suggest that cigarette smoke affects the immediate-early, inductive, and amplification phases of the type I IFN response.


European Respiratory Journal | 2010

Mechanisms of clearance of nontypeable Haemophilus influenzae from cigarette smoke-exposed mouse lungs

Gordon J. Gaschler; Caleb C. J. Zavitz; Carla M. T. Bauer; Martin R. Stämpfli

Inflammation is prevalent in all stages of chronic obstructive pulmonary disease, and, furthermore, individuals undergo periods of exacerbation, during which pulmonary inflammation increases, often a result of bacterial infection. The present study investigates the in vivo consequences of cigarette smoke exposure on bacterial challenge with nontypeable Haemophilus influenzae (NTHi). BALB/c and C57 black 6 (C57BL/6) mice were exposed to cigarette smoke once or twice daily for a total period of 8 weeks. Exacerbated inflammation was observed in cigarette smoke-exposed compared to room-air-exposed mice following challenge with live or heat-inactivated NTHi. Accelerated clearance of live NTHi from cigarette smoke-exposed mice was independent of the establishment of chronic inflammation or direct toxic effects of cigarette smoke components on bacteria. Mechanistically, a cell-free factor in the bronchoalveolar lavage fluid contributed to accelerated clearance following passive transfer to naive mice. Further investigation demonstrated increased titres of immunoglobulin A in the bronchoalveolar lavage fluid, but not the blood, of cigarette smoke-exposed mice, including increased titres of NTHi-specific immunoglobulin A, whereas heavy chain joining element (JH)-/- B-cell-deficient cigarette smoke-exposed mice did not demonstrate decreased bacterial burden following challenge. The present results demonstrate that cigarette smoke exposure results in exacerbated inflammation following challenge with NTHi, as well as increased titres of antibodies that contribute to bacterial clearance.


Cellular Immunology | 2008

Impact of cigarette smoke on T and B cell responsiveness

Caleb C. J. Zavitz; Gordon J. Gaschler; Clinton S. Robbins; Fernando Botelho; P. Gerard Cox; Martin R. Stämpfli

Although its direct effects cannot be discounted, tobaccos effects on the immune system have been proposed to play a key role in mediating its deleterious health impact. Studies in rats using high levels of smoke exposure have suggested that tobacco smoke exhausts cellular signal transduction cascades, making lymphocytes unresponsive to stimulation. In the present study, we show that purified B or T cells, and total lymphocytes from the lungs, lymph nodes and spleens of smoke-exposed mice fluxed calcium, proliferated, and secreted immunoglobulin or IFN-gamma similarly to control mice when stimulated with ligands including anti-IgM, and anti-CD3. Importantly, we recapitulated these findings in PBMCs from human smokers; cells from long-term smokers and never-smokers proliferated equivalently when stimulated ex vivo. Previous reports of lymphocyte unresponsiveness in rats are inconsistent with these findings, and may reflect a phenomenon observed only at levels of smoke exposure well above those seen in actual human smokers.


Journal of Immunology | 2010

Dysregulated Macrophage-Inflammatory Protein-2 Expression Drives Illness in Bacterial Superinfection of Influenza

Caleb C. J. Zavitz; Carla M. T. Bauer; Gordon J. Gaschler; Katie Fraser; Robert M. Strieter; Cory M. Hogaboam; Martin R. Stämpfli

Influenza virus infection is a leading cause of death and disability throughout the world. Influenza-infected hosts are vulnerable to secondary bacterial infection, however, and an ensuing bacterial pneumonia is actually the predominant cause of influenza-attributed deaths during pandemics. A number of mechanisms have been proposed by which influenza may predispose to superinfection with an unrelated or heterologous pathogen, but the subsequent interaction between the host, virus, and bacteria remains an understudied area. In this study, we develop and examine a novel model of heterologous pulmonary infection in which an otherwise subclinical Bordetella parapertussis infection synergizes with an influenza virus infection to yield a life-threatening secondary pneumonia. Despite a profound pulmonary inflammatory response and unaltered viral clearance, bacterial clearance was significantly impaired in heterologously infected mice. No deficits were observed in pulmonary or systemic adaptive immune responses or the viability or function of infiltrating inflammatory cells to explain this phenomenon, and we provide evidence that the onset of severe pulmonary inflammation actually precedes the increased bacterial burden, suggesting that exacerbated inflammation is independent of bacterial burden. To that end, neutralization of the ELR+ inflammatory chemokine MIP-2 (CXCL2/GRO-β) attenuated the inflammation, weight loss, and clinical presentation of heterologously infected mice without impacting bacterial burden. These data suggest that pulmonary inflammation, rather than pathogen burden, is the key threat during bacterial superinfection of influenza and that selective chemokine antagonists may be a novel therapeutic intervention in cases of bacterial superinfection of influenza.

Collaboration


Dive into the Caleb C. J. Zavitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Libby

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge