Caleb C. Roth
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caleb C. Roth.
PLOS ONE | 2011
Bennett L. Ibey; Caleb C. Roth; Andrei G. Pakhomov; Joshua A. Bernhard; Gerald J. Wilmink; Olga N. Pakhomova
In this study, we determined the LD50 (50% lethal dose) for cell death, and the ED50 (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD50 varied substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa. PS externalized at doses equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr uptake occurred at doses lower than required for death in three of the cell lines: 656 J/g for CHO-K1, 634 J/g for HeLa, and 142 J/g for GH3. Both Jurkat and U937 had a LD50 lower than the ED50 for Pr uptake at 780 J/g and 1274 J/g, respectively. The mechanism responsible for these differences was explored by evaluating cell size, calcium concentration in the exposure medium, and effect of trypsin treatment prior to exposure. None of the studied parameters correlated with the observed results suggesting that cellular susceptibility to injury and death by 10-ns EP was largely determined by cell physiology. In contrast to previous studies, our findings suggest that permeabilization of internal membranes may not necessarily be responsible for cell death by 10-ns EP. Additionally, a mixture of Jurkat and HeLa cells was exposed to 10-ns EP at a dose of 280 J/g. Death was observed only in Jurkat cells suggesting that 10-ns EP may selectively kill cells within a heterogeneous tissue.
Lasers in Surgery and Medicine | 2011
Gerald J. Wilmink; Benjamin D. Rivest; Caleb C. Roth; Bennett L. Ibey; Jason Payne; Luisiana X. Cundin; Jessica E. Grundt; Xomalin G. Peralta; Dustin G. Mixon; William P. Roach
Terahertz (THz) radiation sources are increasingly being used in military, defense, and medical applications. However, the biological effects associated with this type of radiation are not well characterized. In this study, we evaluated the cellular and molecular response of human dermal fibroblasts exposed to THz radiation.
Biochemical and Biophysical Research Communications | 2014
Bennett L. Ibey; Jody C. Ullery; Olga N. Pakhomova; Caleb C. Roth; Iurii Semenov; Hope T. Beier; Melissa Tarango; Shu Xiao; Karl H. Schoenbach; Andrei G. Pakhomov
Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, propidium iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (at 15 min) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF.
Journal of Biomedical Optics | 2011
Gerald J. Wilmink; Bennett L. Ibey; Thomas Tongue; Brian Schulkin; Norman Laman; Xomalin G. Peralta; Caleb C. Roth; Cesario Z. Cerna; Benjamin D. Rivest; Jessica E. Grundt; William P. Roach
Terahertz spectrometers and imaging systems are currently being evaluated as biomedical tools for skin burn assessment. These systems show promise, but due to their size and weight, they have restricted portability, and are impractical for military and battlefield settings where space is limited. In this study, we developed and tested the performance of a compact, light, and portable THz time-domain spectroscopy (THz-TDS) device. Optical properties were collected with this system from 0.1 to 1.6 THz for water, ethanol, and several ex vivo porcine tissues (muscle, adipose, skin). For all samples tested, we found that the index of refraction (n) decreases with frequency, while the absorption coefficient (μ(a)) increases with frequency. Muscle, adipose, and frozen/thawed skin samples exhibited comparable n values ranging between 2.5 and 2.0, whereas the n values for freshly harvested skin were roughly 40% lower. Additionally, we found that the freshly harvested samples exhibited higher μ(a) values than the frozen/thawed skin samples. Overall, for all liquids and tissues tested, we found that our system measured optical property values that were consistent with those reported in the literature. These results suggest that our compact THz spectrometer performed comparable to its larger counterparts, and therefore may be a useful and practical tool for skin health assessment.
Bioelectrochemistry | 2013
Gleb Tolstykh; Hope T. Beier; Caleb C. Roth; Gary L. Thompson; Jason Payne; Marjorie A. Kuipers; Bennett L. Ibey
Exposure to nanosecond pulsed electrical fields (nsPEFs) results in a myriad of observable effects in mammalian cells. While these effects are often attributed to the direct permeabilization of both the plasma and organelle membranes, the underlying mechanism(s) are not well understood. We hypothesize that nsPEF-induced membrane disturbance will initiate complex intracellular lipid signaling pathways, which ultimately lead to the observed multifarious effects. In this article, we show activation of one of these pathways--phosphoinositide signaling cascade. Here we demonstrate that nsPEF initiates phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis or depletion from the plasma membrane, accumulation of inositol-1,4,5-trisphosphate (IP3) in the cytoplasm and increase of diacylglycerol (DAG) on the inner surface of the plasma membrane. All of these events are initiated by a single 16.2 kV/cm, 600 ns pulse exposure. To further this claim, we show that the nsPEF-induced activation mirrors the response of M1-acetylcholine Gq/11-coupled metabotropic receptor (hM1). This demonstration of PIP2 hydrolysis by nsPEF exposure is an important step toward understanding the mechanisms underlying this unique stimulus for activation of lipid signaling pathways and is critical for determining the potential for nsPEFs to modulate mammalian cell functions.
Biochemical and Biophysical Research Communications | 2012
Hope T. Beier; Caleb C. Roth; Gleb P. Tolstykh; Bennett L. Ibey
Exposure of cells to nanosecond pulsed electric fields (nsPEF) causes a rapid increase in intracellular calcium. The mechanism(s) responsible for this calcium burst remains unknown, but is hypothesized to be from direct influx through nanopores, the activation of specific ion channels, or direct disruption of organelles. It is likely, however, that several mechanisms are involved/activated, thereby resulting in a complex chain of events that are difficult to separate by slow imaging methods. In this letter, we describe a novel high-speed imaging system capable of determining the spatial location of calcium bursts within a single cell following nsPEF exposure. Preliminary data in rodent neuroblastoma cells are presented, demonstrating the ability of this system to track the location of calcium bursts in vitro within milliseconds of exposure. These data reveal that calcium ions enter the cell from the plasma membrane regions closest to the electrodes (poles), and that intracellular calcium release occurs in the absence of extracellular calcium. We believe that this novel technique will allow us to temporally and spatially separate various nsPEF-induced effects, leading to powerful insights into the mechanism(s) of interaction between electric fields and cellular membranes.
Journal of Biomedical Optics | 2013
Caleb C. Roth; Gleb Tolstykh; Jason Payne; Marjorie A. Kuipers; Gary L. Thompson; Mauris N. DeSilva; Bennett L. Ibey
Abstract. The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca2+ overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca2+ influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca2+, was 1.76 kV/cm for NG108 and 0.84 kV/cm for PHN. At 16.2 kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca2+ channel blocker, failed to prevent Ca2+ uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca2+ influx that may be capable of controllably modulating neurological function.
Bioelectrochemistry | 2014
Gleb P. Tolstykh; Hope T. Beier; Caleb C. Roth; Gary L. Thompson; Bennett L. Ibey
The interaction between nsPEF-induced Ca(2+) release and nsPEF-induced phosphatidylinositol4,5-bisphosphate (PIP2) hydrolysis is not well understood. To better understand this interrelation we monitored intracellular calcium changes, in cells loaded with Calcium Green-1 AM, and generation of PIP2 hydrolysis byproducts (inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)) in cells transfected with one of two fluorescent reporter genes: PLCδ-PH-EGFP or GFP-C1-PKCγ-C1a. The percentage fluorescence differences (ΔF %) after exposures were determined. Upon nsPEF impact, we found that in the absence of extracellular Ca(2+) the population of IP3 liberated during nsPEF exposure (ΔF 6%±3, n=22), is diminished compared to the response in the presence of calcium (ΔF 84%±15, n=20). The production of DAG in the absence of extracellular Ca(2+) (ΔF 29%±5, n=25), as well as in cells exposed to thapsigargin (ΔF 40%±12, n=15), was not statistically different from cells exposed in the presence of extracellular calcium (ΔF 22±6%, n=18). This finding suggests that the change in intracellular calcium concentration is not solely driving the observed response. Interestingly, the DAG produced in the absence of Ca(2+) is the strongest near the membrane regions facing the electrodes, whereas the presence of extracellular Ca(2+) leads to a whole cell response. The reported observations of Ca(2+) dynamics combined with IP3 and DAG production suggest that nsPEF may cause a direct effect on the phospholipids within the plasma membrane.
Bioelectromagnetics | 2014
Gary L. Thompson; Caleb C. Roth; Gleb Tolstykh; Marjorie A. Kuipers; Bennett L. Ibey
Nanosecond pulsed electric fields (nsPEFs) perturb membranes of cultured mammalian cells in a dose-dependent manner with different types of cells exhibiting characteristic survivability. Adherent cells appear more robust than non-adherent cells during whole-cell exposure. We hypothesize that cellular elasticity based upon the actin cytoskeleton is a contributing parameter, and the alteration of a cells actin cortex will significantly affect viability upon nsPEF exposure. Chinese hamster ovary (CHO) cells that are (a) untreated, (b) treated with latrunculin A to inhibit actin polymerization, or (c) exposed to nsPEFs have been probed using atomic force microscopy (AFM) force-indentations. Exposure to 50 or 100 pulses of 10 ns duration and 150 kV/cm in a single dosage approximately lowers average CHO cell elastic modulus by half, whereas latrunculin lowers it more than 75%. Latrunculin pre-treatment disrupts the actin cortex enough that it negates cumulative damage by equally fractionated (i.e., two rounds of 50 pulses each, separated by 10 min) dosages of nsPEFs as seen in untreated and dimethyl sulfoxide (DMSO)-treated cells with propidium uptake, phosphatidylserine externalization, and 24 h viability according to MTT and CellTiter Glo assays. These results suggest a correlation among cell stiffness, cytoskeletal integrity, and susceptibility to recurrent exposures to nsPEFs, which emphasizes a mechanobiological underpinning of nsPEF bioeffects.
Journal of Biomedical Optics | 2014
Gary L. Thompson; Caleb C. Roth; Danielle R. Dalzell; Marjorie A. Kuipers; Bennett L. Ibey
Abstract. The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.
Collaboration
Dive into the Caleb C. Roth's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs