Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caleb D. Bazyler is active.

Publication


Featured researches published by Caleb D. Bazyler.


Journal of Strength and Conditioning Research | 2015

The use of the isometric squat as a measure of strength and explosiveness.

Caleb D. Bazyler; George K. Beckham; Kimitake Sato

Abstract Bazyler, CD, Beckham, GK, and Sato, K. The use of the isometric squat as a measure of strength and explosiveness. J Strength Cond Res 29(5): 1386–1392, 2015—The isometric squat has been used to detect changes in kinetic variables as a result of training; however, controversy exists in its application to dynamic multijoint tasks. Thus, the purpose of this study was to further examine the relationship between isometric squat kinetic variables and isoinertial strength measures. Subjects (17 men, 1-repetition maximum [1RM]: 148.2 ± 23.4 kg) performed squats 2 d·wk−1 for 12 weeks and were tested on 1RM squat, 1RM partial squat, and isometric squat at 90° and 120° of knee flexion. Test-retest reliability was very good for all isometric measures (intraclass correlation coefficients > 0.90); however, rate of force development 250 milliseconds at 90° and 120° seemed to have a higher systematic error (relative technical error of measurement = 8.12%, 9.44%). Pearson product-moment correlations indicated strong relationships between isometric peak force at 90° (IPF 90°) and 1RM squat (r = 0.86), and IPF 120° and 1RM partial squat (r = 0.79). Impulse 250 milliseconds (IMP) at 90° and 120° exhibited moderate to strong correlations with 1RM squat (r = 0.70, 0.58) and partial squat (r = 0.73, 0.62), respectively. Rate of force development at 90° and 120° exhibited weak to moderate correlations with 1RM squat (r = 0.55, 0.43) and partial squat (r = 0.32, 0.42), respectively. These findings demonstrate a degree of joint angle specificity to dynamic tasks for rapid and peak isometric force production. In conclusion, an isometric squat performed at 90° and 120° is a reliable testing measure that can provide a strong indication of changes in strength and explosiveness during training.


Journal of Strength and Conditioning Research | 2014

The efficacy of incorporating partial squats in maximal strength training.

Caleb D. Bazyler; Kimitake Sato; Craig A. Wassinger; Hugh S. Lamont; Michael H. Stone

Abstract Bazyler, CD, Sato, K, Wassinger, CA, Lamont, HS, and Stone, MH. The efficacy of incorporating partial squats in maximal strength training. J Strength Cond Res 28(11): 3024–3032, 2014—The purpose of our study was to examine the effects of 2 different training methods on dynamic and isometric measures of maximal strength. Seventeen recreationally trained men (1 repetition maximum [1RM] squat: 146.9 ± 22.4 kg) were assigned to 2 groups: full range of motion (ROM) squat (F) and full ROM with partial ROM squat (FP) for the 7-week training intervention. Repeated measures analysis of variance revealed that there was a statistically significant group-by-time interaction for impulse scaled at 50, 90, and 250 milliseconds at 90° of knee flexion and rate of force development at 200 milliseconds with 120° of knee flexion (p ⩽ 0.05). There was also a statistically significant time effect (p ⩽ 0.05) for the 1RM squat, 1RM partial squat, isometric squat peak force allometrically scaled (IPFa) 90°, IPFa 120°, and impulse allometrically scaled at 50, 90, 200, and 250 milliseconds at 90° and 120° of knee flexion. Additionally, the FP group achieved statistically larger relative training intensities (%1RM) during the final 3 weeks of training (p ⩽ 0.05). There was a trend for FP to improve over F in 1RM squat (+3.1%, d = 0.53 vs. 0.32), 1RM partial squat (+4.7%, d = 0.95 vs. 0.69), IPFa 120° (+5.7%, d = 0.52 vs. 0.12), and impulse scaled at 50, 90, 200, and 250 milliseconds at 90° (+6.3 to 13.2%, d = 0.50–1.01 vs. 0.30–0.57) and 120° (+3.4 to 16.8%, d = 0.45–1.11 vs. 0.08–0.37). These larger effect sizes in the FP group can likely be explained their ability to train at larger relative training intensities during the final 3 weeks of training resulting in superior training adaptations. Our findings suggest that partial ROM squats in conjunction with full ROM squats may be an effective training method for improving maximal strength and early force-time curve characteristics in men with previous strength training experience. Practically, partial squats may be beneficial for strength and power athletes during a strength-speed mesocycle while peaking for competition.


Journal of Strength and Conditioning Research | 2017

Changes in Muscle Architecture, Explosive Ability, and Track and Field Throwing Performance Throughout a Competitive Season and After a Taper

Caleb D. Bazyler; Satoshi Mizuguchi; Alex P. Harrison; Kimitake Sato; Ashley A. Kavanaugh; Brad H. DeWeese; Michael H. Stone

Abstract Bazyler, CD, Mizuguchi, S, Harrison, AP, Sato, K, Kavanaugh, AA, DeWeese, BH, and Stone, MH. Changes in muscle architecture, explosive ability, and track and field throwing performance throughout a competitive season and after a taper. J Strength Cond Res 31(10): 2785–2793, 2017—The purpose of this study was to examine the effects of an overreach and taper on measures of muscle architecture, jumping, and throwing performance in Division I collegiate throwers preparing for conference championships. Six collegiate track and field throwers (3 hammer, 2 discus, 1 javelin) trained for 12 weeks using a block-periodization model culminating with a 1-week overreach followed by a 3-week taper (ORT). Session rating of perceived exertion training load (RPETL) and strength training volume-load times bar displacement (VLd) were recorded weekly. Athletes were tested pre-ORT and post-ORT on measures of vastus lateralis architecture, unloaded and loaded squat and countermovement jump performance, underhand and overhead throwing performance, and competition throwing performance. There was a statistical reduction in weight training VLd/session (d = 1.21, p ⩽ 0.05) and RPETL/session (d = 0.9, p ⩽ 0.05) between the in-season and ORT training phases. Five of 6 athletes improved overhead throw and competition throwing performance after the ORT (d = 0.50, p ⩽ 0.05). Vastus lateralis muscle thickness statistically increased after the in-season training phase (d = 0.28, p ⩽ 0.05) but did not change after the ORT. Unloaded countermovement jump peak force and relative peak power improved significantly after the ORT (d = 0.59, p ⩽ 0.05, d = 0.31, p ⩽ 0.05, respectively). These findings demonstrate that an overreaching week followed by a 3-week taper is an effective means of improving explosive ability and throwing performance in collegiate track and field throwers despite the absence of detectable changes in muscle architecture.


Strength and Conditioning Journal | 2015

Strength Training for Endurance Athletes: Theory to Practice

Caleb D. Bazyler; Heather Abbott; Christopher R. Bellon; Christopher B. Taber; Michael H. Stone

ABSTRACT THE PURPOSE OF THIS REVIEW IS TWOFOLD: TO ELUCIDATE THE UTILITY OF RESISTANCE TRAINING FOR ENDURANCE ATHLETES, AND PROVIDE THE PRACTITIONER WITH EVIDENCED-BASED PERIODIZATION STRATEGIES FOR CONCURRENT STRENGTH AND ENDURANCE TRAINING IN ATHLETIC POPULATIONS. BOTH LOW-INTENSITY EXERCISE ENDURANCE (LIEE) AND HIGH-INTENSITY EXERCISE ENDURANCE (HIEE) HAVE BEEN SHOWN TO IMPROVE AS A RESULT OF MAXIMAL, HIGH FORCE, LOW VELOCITY (HFLV) AND EXPLOSIVE, LOW-FORCE, HIGH-VELOCITY STRENGTH TRAINING. HFLV STRENGTH TRAINING IS RECOMMENDED INITIALLY TO DEVELOP A NEUROMUSCULAR BASE FOR ENDURANCE ATHLETES WITH LIMITED STRENGTH TRAINING EXPERIENCE. A SEQUENCED APPROACH TO STRENGTH TRAINING INVOLVING PHASES OF STRENGTH-ENDURANCE, BASIC STRENGTH, STRENGTH, AND POWER WILL PROVIDE FURTHER ENHANCEMENTS IN LIEE AND HIEE FOR HIGH-LEVEL ENDURANCE ATHLETES.


Sports | 2017

Current Research and Statistical Practices in Sport Science and a Need for Change

Jake R. Bernards; Kimitake Sato; G. Gregory Haff; Caleb D. Bazyler

Current research ideologies in sport science allow for the possibility of investigators producing statistically significant results to help fit the outcome into a predetermined theory. Additionally, under the current Neyman-Pearson statistical structure, some argue that null hypothesis significant testing (NHST) under the frequentist approach is flawed, regardless. For example, a p-value is unable to measure the probability that the studied hypothesis is true, unable to measure the size of an effect or the importance of a result, and unable to provide a good measure of evidence regarding a model or hypothesis. Many of these downfalls are key questions researchers strive to answer following an investigation. Therefore, a shift towards a magnitude-based inference model, and eventually a fully Bayesian framework, is thought to be a better fit from a statistical standpoint and may be an improved way to address biases within the literature. The goal of this article is to shed light on the current research and statistical shortcomings the field of sport science faces today, and offer potential solutions to help guide future research practices.


Sports | 2018

Resting Hormone Alterations and Injuries: Block vs. DUP Weight-Training among D-1 Track and Field Athletes

Keith Painter; G. Greg Haff; N. Triplett; Charles A. Stuart; Guy Hornsby; Michael W. Ramsey; Caleb D. Bazyler; Michael H. Stone

Daily undulating periodization (DUP), using daily alterations in repetitions, has been advocated as a superior method of resistance training, while traditional forms of programming for periodization (Block) have been questioned. Nineteen Division I track and field athletes were assigned to either a 10-week Block or DUP training group. Year and event were controlled. Over the course of the study, there were four testing sessions, which were used to evaluate a variety of strength characteristics, including maximum isometric strength, rate of force development, and one repetition maximum (1RM). Although, performance trends favored the Block group for strength and rate of force development, no statistical differences were found between the two groups. However, different (p ≤ 0.05) estimated volumes of work (VL) and amounts of improvement per VL were found between groups. Based upon calculated training efficiency scores, these data indicate that a Block training model is more efficient in producing strength gains than a DUP model. Additionally, alterations in testosterone (T), cortisol (C) and the T:C ratio were measured. Although there were no statistically (p ≤ 0.05) different hormone alterations between groups, relationships between training variables and hormone concentrations including the T:C ratio, indicate that Block may be more efficacious in terms of fatigue management.


Research Quarterly for Exercise and Sport | 2017

Impact of a Submaximal Warm-Up on Endurance Performance in Highly Trained and Competitive Male Runners.

Michael C. Zourdos; Caleb D. Bazyler; Edward Jo; Andy V. Khamoui; Bong-Sup Park; Sang-Rok Lee; Lynn B. Panton; Jeong-Su Kim

Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, Mage = 21 ± 2 years, MVO2max = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO2max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. Results: At the end of 13 min prior to the distance trial, mean VO2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. Conclusions: These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.


Sports | 2018

Neuromuscular Adaptations Following Training and Protein Supplementation in a Group of Trained Weightlifters

Christopher B. Taber; Kevin M. Carroll; Brad H. DeWeese; Kimitake Sato; Charles A. Stuart; Mary E. A. Howell; Kenton Hall; Caleb D. Bazyler; Michael H. Stone

The purpose of this study was to examine the effects of a recovery supplement compared with a placebo on muscle morphology in trained weightlifters. Vastus lateralis and muscle fiber cross sectional area of type I and type II fibers were compared between groups using a series of 2 × 2 (group × time) repeated measure ANOVAs. Both groups on average improved cross-sectional area of the vastus lateralis, type I and type II muscle fibers from pre-to-post but individual response varied within both groups. Greater magnitude of changes in type I and type II muscle fibers were observed for the placebo group but not for vastus lateralis cross sectional area. Additionally, subjects were divided into large and small fiber groups based on combined fiber size at the start of the investigation. These findings indicate that the recovery supplement utilized provided no greater effect compared with a placebo in a 12-week block periodization protocol in trained weightlifters. The primary determinate of fiber size changes in the study was determined to be the initial fiber size of muscle fibers with larger practical changes observed in the small fiber group compared with the large fiber group in type I, II, and ultrasound cross-sectional area (CSA).


Sports | 2018

Identifying a Test to Monitor Weightlifting Performance in Competitive Male and Female Weightlifters

S. Travis; Jacob R. Goodin; George K. Beckham; Caleb D. Bazyler

Monitoring tests are commonly used to assess weightlifter’s preparedness for competition. Although various monitoring tests have been used, it is not clear which test is the strongest indicator of weightlifting performance. Therefore, the purpose of this study was to (1) determine the relationships between vertical jump, isometric mid-thigh pull (IMTP) and weightlifting performance; and (2) compare vertical jumps to IMTP as monitoring tests of weightlifting performance in a large cohort of male and female weightlifters. Methods: Fifty-two competitive weightlifters (31 males, 21 females) participated in squat and countermovement jump testing (SJ, CMJ), and IMTP testing performed on force plates. All laboratory testing data was correlated to a recent competition where the athletes had attempted to peak. Results: Squat jump height (SJH) was the strongest correlate for men and women with the Sinclair Total (r = 0.686, p ≤ 0.01; r = 0.487, p ≤ 0.05, respectively) compared to countermovement jump height (r = 0.642, p ≤ 0.01; r = 0.413, p = 0.063), IMTP peak force allometrically scaled to body mass (r = 0.542, p ≤ 0.01; r = −0.044, p = 0.851) and rate of force development at 200 ms (r = 0.066, p = 0.723; r = 0.086, p = 0.711), respectively. Further, SJH was a stronger correlate of relative weightlifting performance compared to IMTP peak force in females (p = 0.042), but not male weightlifters (p = 0.191). Conclusions: Although CMJ and IMTP are still considered strong indicators of weightlifting performance, SJH appears to be the most indicative measure of weightlifting performance across a wide-range of performance levels. Thus, SJH can be used as a reliable measure to monitor weightlifting performance in male and female weightlifters.


International Journal of Sports Physiology and Performance | 2018

Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity

Kevin M. Carroll; Jake R. Bernards; Caleb D. Bazyler; Christopher B. Taber; Charles A. Stuart; Brad H. DeWeese; Kimitake Sato; Michael H. Stone

PURPOSE The purpose of our investigation was to compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training (RT) on measures of training load, vertical jump, and force production in well-trained lifters. METHODS Fifteen well-trained (isometric peak force= 4403.61+664.69 N, mean+SD) males underwent RT 3 d·wk-1 for 10-weeks in either an RM group (n=8) or RISR group (n=7). Weeks 8-10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day while the RISR group trained based on percentages. Testing at five time-points included unweighted (<1kg) and 20kg squat jumps (SJ), counter-movement jumps (CMJ), and isometric mid-thigh pulls (IMTP). Mixed design ANOVAs and effect size using Hedges g were used to assess within and between-group alterations. RESULTS Moderate between-group effect sizes were observed for all SJ and CMJ conditions supporting the RISR group (g=0.76-1.07). A small between-group effect size supported RISR for allometrically-scaled isometric peak force (g=0.20). Large and moderate between-group effect sizes supported RISR for rate of force development from 0-50ms (g=1.25) and 0-100ms (g=0.89). Weekly volume load displacement was not different between groups (p>0.05), however training strain was statistically greater in the RM group (p<0.05). CONCLUSIONS Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared to RM training, which may partly be explained by differences in the imposed training stress and the use of failure/non-failure training in a well-trained population.

Collaboration


Dive into the Caleb D. Bazyler's collaboration.

Top Co-Authors

Avatar

Michael H. Stone

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Kimitake Sato

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Satoshi Mizuguchi

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Brad H. DeWeese

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Ashley A. Kavanaugh

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

George K. Beckham

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Carroll

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Charles A. Stuart

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake R. Bernards

East Tennessee State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge