Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caleb E. Finch is active.

Publication


Featured researches published by Caleb E. Finch.


Neurobiology of Aging | 2000

Inflammation and Alzheimer’s disease

Haruhiko Akiyama; Steven W. Barger; Scott R. Barnum; Bonnie M. Bradt; Joachim Bauer; Greg M. Cole; Neil R. Cooper; Piet Eikelenboom; Mark R. Emmerling; Berndt L. Fiebich; Caleb E. Finch; Sally A. Frautschy; W. S. T. Griffin; Harald Hampel; Michael Hüll; Gary E. Landreth; Lih-Fen Lue; Robert E. Mrak; Ian R. Mackenzie; Patrick L. McGeer; M. Kerry O’Banion; Joel S. Pachter; G.M. Pasinetti; Carlos Plata–Salaman; Joseph Rogers; Russell Rydel; Yong Shen; Wolfgang J. Streit; Ronald Strohmeyer; Ikuo Tooyoma

Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimers disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Alzheimer's disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss

Yuesong Gong; Lei Chang; Kirsten L. Viola; Pascale N. Lacor; Mary P. Lambert; Caleb E. Finch; Grant A. Krafft; William L. Klein

A molecular basis for memory failure in Alzheimers disease (AD) has been recently hypothesized, in which a significant role is attributed to small, soluble oligomers of amyloid β-peptide (Aβ). Aβ oligomeric ligands (also known as ADDLs) are known to be potent inhibitors of hippocampal long-term potentiation, which is a paradigm for synaptic plasticity, and have been linked to synapse loss and reversible memory failure in transgenic mouse AD models. If such oligomers were to build up in human brain, their neurological impact could provide the missing link that accounts for the poor correlation between AD dementia and amyloid plaques. This article, using antibodies raised against synthetic Aβ oligomers, verifies the predicted accumulation of soluble oligomers in AD frontal cortex. Oligomers in AD reach levels up to 70-fold over control brains. Brain-derived and synthetic oligomers show structural equivalence with respect to mass, isoelectric point, and recognition by conformation-sensitive antibodies. Both oligomers, moreover, exhibit the same striking patterns of attachment to cultured hippocampal neurons, binding on dendrite surfaces in small clusters with ligand-like specificity. Binding assays using solubilized membranes show oligomers to be high-affinity ligands for a small number of nonabundant proteins. Current results confirm the prediction that soluble oligomeric Aβ ligands are intrinsic to AD pathology, and validate their use in new approaches to therapeutic AD drugs and vaccines.


Trends in Neurosciences | 2001

Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum?

William L. Klein; Grant A. Krafft; Caleb E. Finch

Amyloid beta (Abeta) is a small self-aggregating peptide produced at low levels by normal brain metabolism. In Alzheimers disease (AD), self-aggregation of Abeta becomes rampant, manifested most strikingly as the amyloid fibrils of senile plaques. Because fibrils can kill neurons in culture, it has been argued that fibrils initiate the neurodegenerative cascades of AD. An emerging and different view, however, is that fibrils are not the only toxic form of Abeta, and perhaps not the neurotoxin that is most relevant to AD: small oligomers and protofibrils also have potent neurological activity. Immuno-neutralization of soluble Abeta-derived toxins might be the key to optimizing AD vaccines that are now on the horizon.


The Journal of Neuroscience | 2004

Synaptic Targeting by Alzheimer's-Related Amyloid β Oligomers

Pascale N. Lacor; Maria C. Buniel; Lei Chang; Sara J. Fernandez; Yuesong Gong; Kirsten L. Viola; Mary P. Lambert; Pauline T. Velasco; Eileen H. Bigio; Caleb E. Finch; Grant A. Krafft; William L. Klein

The cognitive hallmark of early Alzheimers disease (AD) is an extraordinary inability to form new memories. For many years, this dementia was attributed to nerve-cell death induced by deposits of fibrillar amyloid β (Aβ). A newer hypothesis has emerged, however, in which early memory loss is considered a synapse failure caused by soluble Aβ oligomers. Such oligomers rapidly block long-term potentiation, a classic experimental paradigm for synaptic plasticity, and they are strikingly elevated in AD brain tissue and transgenic-mouse AD models. The current work characterizes the manner in which Aβ oligomers attack neurons. Antibodies raised against synthetic oligomers applied to AD brain sections were found to give diffuse stain around neuronal cell bodies, suggestive of a dendritic pattern, whereas soluble brain extracts showed robust AD-dependent reactivity in dot immunoblots. Antigens in unfractionated AD extracts attached with specificity to cultured rat hippocampal neurons, binding within dendritic arbors at discrete puncta. Crude fractionation showed ligand size to be between 10 and 100 kDa. Synthetic Aβ oligomers of the same size gave identical punctate binding, which was highly selective for particular neurons. Image analysis by confocal double-label immunofluorescence established that >90% of the punctate oligomer binding sites colocalized with the synaptic marker PSD-95 (postsynaptic density protein 95). Synaptic binding was accompanied by ectopic induction of Arc, a synaptic immediate-early gene, the overexpression of which has been linked to dysfunctional learning. Results suggest the hypothesis that targeting and functional disruption of particular synapses by Aβ oligomers may provide a molecular basis for the specific loss of memory function in early AD.


Nature Medicine | 2008

Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase

Mohammad Ali Faghihi; Farzaneh Modarresi; Ahmad M. Khalil; Douglas E. Wood; Barbara G. Sahagan; Todd E. Morgan; Caleb E. Finch; Georges St. Laurent; Paul J. Kenny; Claes Wahlestedt

Recent efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimers disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimers disease and in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimers disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimers disease.


Journal of the American Geriatrics Society | 2002

Cytokines and Cognition—The Case for A Head-to-Toe Inflammatory Paradigm

Craig J. Wilson; Caleb E. Finch; Harvey J. Cohen

The brain is not only immunologically active of its own accord, but also has complex peripheral immune interactions. Given the central role of cytokines in neuroimmmunoendocrine processes, it is hypothesized that these molecules influence cognition via diverse mechanisms. Peripheral cytokines penetrate the blood‐brain barrier directly via active transport mechanisms or indirectly via vagal nerve stimulation. Peripheral administration of certain cytokines as biological response modifiers produces adverse cognitive effects in animals and humans. There is abundant evidence that inflammatory mechanisms within the central nervous system (CNS) contribute to cognitive impairment via cytokine‐mediated interactions between neurons and glial cells. Cytokines mediate cellular mechanisms subserving cognition (e.g., cholinergic and dopaminergic pathways) and can modulate neuronal and glial cell function to facilitate neuronal regeneration or neurodegeneration. As such, there is a growing appreciation of the role of cytokine‐mediated inflammatory processes in neurodegenerative diseases such as Alzheimers disease and vascular dementia. Consistent with their involvement as mediators of bidirectional communication between the CNS and the peripheral immune system, cytokines play a key role in the hypothalamic‐pituitary‐adrenal axis activation seen in stress and depression. In addition, complex cognitive systems such as those that underlie religious beliefs, can modulate the effects of stress on the immune system. Indirect means by which peripheral or central cytokine dysregulation could affect cognition include impaired sleep regulation, micronutrient deficiency induced by appetite suppression, and an array of endocrine interactions. Given the multiple levels at which cytokines are capable of influencing cognition it is plausible that peripheral cytokine dysregulation with advancing age interacts with cognitive aging.


Experimental Neurology | 1995

Evidence for apoptotic cell death in Alzheimer's disease

Georgeann Smale; Nancy R. Nichols; Daniel R. Brady; Caleb E. Finch; Walter E. Horton

We provide evidence for apoptosis in Alzheimers disease using the in situ labeling technique TUNEL (terminal transferase-mediated dUTP-biotin nick end labeling). The technique specifically detects apoptotic cells by utilizing terminal transferase to incorporate biotinylated nucleotides into the fragmented DNA of apoptotic cells. The labeled cells are visualized by reaction with avidin peroxidase and a suitable substrate. Sections from the hippocampus of Alzheimer-diseased (AD) brains and non-AD brains were examined for apoptosis. While considerable variation in the quantity of apoptotic cells was observed among individual samples, the incidence of apoptosis in AD brains was elevated in comparison to age-matched, non-AD brains in specific regions of the hippocampal formation. Immunostaining indicated that both neurons and astrocytes were undergoing apoptosis, although the majority of the TUNEL-positive cells appeared to be glial, based on the location of the stained cells. These data suggest that apoptosis may be involved in both the primary neuronal cell loss and in the glial response that is a component of AD.


Molecular Brain Research | 1991

Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning

Judes Poirier; Mark Hess; Patrick C. May; Caleb E. Finch

Entorhinal cortex lesions (ECL) that damage the perforant path to the hippocampus induce rapid increases of apolipoprotein E (apo E) mRNA in the hippocampus. Apo E mRNA was localized in astrocytes by in situ hybridization in combination with immunocytochemistry for glial fibrillary acidic protein (GFAP). Unilateral ECL also increased hippocampal GFAP mRNA, with increases preceding those of apo E mRNA. The apo E mRNA and GFAP mRNA responses were transiently bilateral in non-denervated zones. The timing of response in apo E mRNA to deafferentation supports suggestions that apo E has roles in membrane remodelling during responses to neuron injury.


Frontiers in Neuroendocrinology | 2008

Progesterone Receptors: Form and Function in Brain

Roberta Diaz Brinton; Richard F. Thompson; Michael R. Foy; Michel Baudry; Jun Ming Wang; Caleb E. Finch; Todd E. Morgan; Christian J. Pike; Wendy J. Mack; Frank Z. Stanczyk; Jon Nilsen

Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.


Brain Research | 1973

Catecholamine metabolism in the brains of ageing male mice

Caleb E. Finch

Several age-related changes of catecholamine metabolism in senescent C57B1/6J male mice were observed: (1) reduced levels of striatal dopamine, (2) reduced conversion of l-[3H]tyrosine and l-[3H]DOPA to catecholamines in 4 brain regions, and (3) slowed catabolism of total norepinephrine in the hypothalamus and of total dopamine in the striatum.

Collaboration


Dive into the Caleb E. Finch's collaboration.

Top Co-Authors

Avatar

Todd E. Morgan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Irina Rozovsky

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Patrick C. May

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Steven A. Johnson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Heinz H. Osterburg

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Nancy R. Nichols

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David Morgan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall C. Thompson

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Anderson

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge