Calogera M. Simonaro
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Calogera M. Simonaro.
Pediatric Research | 2005
Calogera M. Simonaro; Marina D'Angelo; Mark E. Haskins; Edward H. Schuchman
The mucopolysaccharidoses (MPS) are inherited metabolic disorders resulting from the defective catabolism of glycosaminoglycans. In this report, we find that the stimulation of MPS connective tissue cells by the inflammatory cytokines causes enhanced secretion of several matrix-degrading metalloproteinases (MMPs). In addition, expression of tissue inhibitor of metalloproteinase-1 was elevated, consistent with the enhanced MMP activity. These findings were not restricted to one particular MPS disorder or species, and are consistent with previous observations in animal models with chemically induced arthritis. Bromodeoxyuridine incorporation studies also revealed that MPS chondrocytes proliferated up to 5-fold faster than normal chondrocytes, and released elevated levels of transforming growth factor-beta, presumably to counteract the marked chondrocyte apoptosis and matrix degradation associated with MMP expression. Despite this compensatory mechanism, studies of endochondral ossification revealed a reduction in chondro-differentiation in the growth plates. Thus, although MPS chondrocytes grew faster, most of the newly formed cells were immature and could not mineralize into bone. Our studies suggest that altered MMP expression, most likely stimulated by inflammatory cytokines and nitric oxide, is an important feature of the MPS disorders. These data also identify several proinflammatory cytokines, nitric oxide, and MMPs as novel therapeutic targets and/or biomarkers of MPS joint and bone disease. This information should aid in the evaluation of existing therapies for these disorders, such as enzyme replacement therapy and bone marrow transplantation, and may lead to the development of new therapeutic approaches.
The FASEB Journal | 2000
Silvia R.P. Miranda; Xingxuan He; Calogera M. Simonaro; Shimon Gatt; Arie Dagan; Robert J. Desnick; Edward H. Schuchman
An inherited deficiency of acid sphingomyelinase (ASM) activity results in the Type A and B forms of Niemann‐Pick disease (NPD). Using the ASM‐deficient mouse model (ASMKO) of NPD, we evaluated the efficacy of enzyme replacement therapy (ERT) for the treatment of this disorder. Recombinant human ASM (rhASM) was purified from the media of overexpressing Chinese Hamster ovary cells and i.v. injected into 16 five‐month‐old ASMKO mice at doses of 0.3, 1, 3, or 10 mg/kg every other day for 14 days (7 injections). On day 16, the animals were killed and the tissues were analyzed for their sphingomyelin (SPM) content. Notably, the SPM levels were markedly reduced in the hearts, livers, and spleens of these animals, and to a lesser degree in the lungs. Little or no substrate depletion was found in the kidneys or brains. Based on these results, three additional 5‐month‐old ASMKO ani‐mals were injected every other day with 5 mg/kg for 8 days (4 injections) and killed on day 10 for histological analysis. Consistent with the biochemical results, marked histological improvements were observed in the livers, spleens, and lungs, indicating a reversal of the disease pathology. A group of 10 ASMKO mice were then i.v. injected once a week with 1 mg/kg rhASM for 15 wk, starting at 3 wk of age. Although anti‐rhASM antibodies were produced in these mice, the antibodies were not neutralizing and no adverse effects were observed from this treatment. Weight gain and rota‐rod performance were slightly improved in the treated animals as compared with ASMKO control animals, but significant neurological deficits were still observed and their life span was not extended by ERT. In contrast with these CNS results, striking histological and biochemical improvements were found in the reticuloendothelial system organs (livers, spleens, and lungs). These studies indicate that ERT should be an effective therapeutic approach for Type B NPD, but is unlikely to prevent the severe neurodegeneration associated with Type A NPD.—Miranda, S. R. P., He, X., Simonaro, C. M., Gatt, S., Dagan, A., Desnick, R. J., Schuchman, E. H. Infusion of recombinant human acid sphingomyelinase into Niemann‐Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J. 14, 1988–1995 (2000)
Proceedings of the National Academy of Sciences of the United States of America | 2010
Calogera M. Simonaro; Yi Ge; Efrat Eliyahu; Xingxuan He; Karl J. Jepsen; Edward H. Schuchman
Enzyme replacement therapy is currently available for three of the mucopolysaccharidoses (MPSs) but has limited effects on the skeletal lesions. We investigated the involvement of the Toll-like receptor 4 (TLR4) signaling pathway in the pathogenesis of MPS bone and joint disease, and the use of the anti-TNF-α drug, Remicade (Centocor, Inc.), for treatment. TLR4 KO (TLR4(lps−/−)) mice were interbred with MPS VII mice to produce double-KO (DKO) animals. The DKO mice had longer and thinner faces and longer femora as revealed by micro-computed tomography analysis compared with MPS VII mice. Histological analyses also revealed more organized and thinner growth plates. The serum levels of TNF-α were normalized in the DKO animals, and the levels of phosphorylated STAT1 and STAT3 in articular chondrocytes were corrected. These findings led us to evaluate the effects of Remicade in MPS VI rats. When initiated at 1 month of age, i.v. treatment prevented the elevation of TNF-α, receptor activator of NF-κB, and other inflammatory molecules not only in the blood but in articular chondrocytes and fibroblast-like synoviocytes (FLSs). Treatment of 6-month-old animals also reduced the levels of these molecules to normal. The number of apoptotic articular chondrocytes in MPS VI rats was similarly reduced, with less infiltration of synovial tissue into the underlying bone. These studies revealed the important role of TLR4 signaling in MPS bone and joint disease and suggest that targeting TNF-α may have positive therapeutic effects.
Laboratory Investigation | 2001
Calogera M. Simonaro; Mark E. Haskins; Edward H. Schuchman
Mucopolysaccharidosis (MPS) Type VI (Maroteaux-Lamy Disease) is the lysosomal storage disease characterized by deficient arylsulfatase B activity and the resultant accumulation of dermatan sulfate-containing glycosaminoglycans (GAGs). A major feature of this and other MPS disorders is abnormal cartilage and bone development leading to short stature, dysostosis multiplex, and degenerative joint disease. To investigate the underlying cause(s) of degenerative joint disease in the MPS disorders, articular cartilage and cultured articular chondrocytes were examined from rats and cats with MPS VI. An age-progressive increase in the number of apoptotic chondrocytes was identified in the MPS animals by terminal transferase nick-end translation (TUNEL) staining and by immunohistochemical staining with anti-poly (ADP-ribose) polymerase (PARP) antibodies. Articular chondrocytes grown from these animals also released more nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) into the culture media than did control chondrocytes. Notably, dermatan sulfate, the GAG that accumulates in MPS VI cells, induced NO release from normal chondrocytes, suggesting that GAG accumulation was responsible, in part, for the enhanced cell death in the MPS cells. Coculture of normal chondrocytes with MPS VI cells reduced the amount of NO release, presumably because of the release of arylsulfatase B by the normal cells and reuptake by the mutant cells. As a result of the enhanced chondrocyte death, marked proteoglycan and collagen depletion was observed in the MPS articular cartilage matrix. These results demonstrate that MPS VI articular chondrocytes undergo cell death at a higher rate than normal cells, because of either increased levels of dermatan sulfate and/or the presence of inflammatory cytokines in the MPS joints. In turn, this leads to abnormal cartilage matrix homeostasis in the MPS individuals, which further exacerbates the joint deformities characteristic of these disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Weijing Cai; Jaime Uribarri; Li Zhu; Xue Chen; Shobha Swamy; Zhengshan Zhao; Fabrizio Grosjean; Calogera M. Simonaro; George A. Kuchel; Michal Schnaider-Beeri; Mark Woodward; Gary E. Striker; Helen Vlassara
Significance Suppression of NAD+-dependent sirtuin 1 (SIRT1) is linked to dementia or Alzheimer’s disease (AD) and the metabolic syndrome (MS). Because advanced glycation end products (AGEs) promote MS and neurotoxicity, we conducted studies of C57BL6 mice fed isocaloric diets containing defined AGEs [methyl-glyoxal derivatives (MG)] to determine whether food AGEs promote AD and MS. MG+-fed, but not MG−-fed, mice developed brain SIRT1 deficiency, amyloid-β deposits, cognitive and motor deficits, and MS. These findings were validated in older healthy humans with high baseline circulating MG levels by a time-dependent decline in cognition and insulin sensitivity. The data suggest that food-derived AGEs, an environmental factor, contribute to both AD and MS by causing chronic SIRT1 suppression. Importantly, reduction of food-derived AGEs is feasible and may provide an effective treatment strategy for both these epidemics. Age-associated dementia and Alzheimer’s disease (AD) are currently epidemic. Neither their cause nor connection to the metabolic syndrome (MS) is clear. Suppression of deacetylase survival factor sirtuin 1 (SIRT1), a key host defense, is a central feature of AD. Age-related MS and diabetes are also causally associated with suppressed SIRT1 partly due to oxidant glycotoxins [advanced glycation end products (AGEs)]. Changes in the modern diet include excessive nutrient-bound AGEs, such as neurotoxic methyl-glyoxal derivatives (MG). To determine whether dietary AGEs promote AD, we evaluated WT mice pair-fed three diets throughout life: low-AGE (MG−), MG-supplemented low-AGE (MG+), and regular (Reg) chow. Older MG+-fed mice, similar to old Reg controls, developed MS, increased brain amyloid-β42, deposits of AGEs, gliosis, and cognitive deficits, accompanied by suppressed SIRT1, nicotinamide phosphoribosyltransferase, AGE receptor 1, and PPARγ. These changes were not due to aging or caloric intake, as neither these changes nor the MS were present in age-matched, pair-fed MG− mice. The mouse data were enhanced by significant temporal correlations between high circulating AGEs and impaired cognition, as well as insulin sensitivity in older humans, in whom dietary and serum MG levels strongly and inversely associated with SIRT1 gene expression. The data identify a specific AGE (MG) as a modifiable risk factor for AD and MS, possibly acting via suppressed SIRT1 and other host defenses, to promote chronic oxidant stress and inflammation. Because SIRT1 deficiency in humans is both preventable and reversible by AGE reduction, a therapeutic strategy that includes AGE reduction may offer a new strategy to combat the epidemics of AD and MS.
PLOS ONE | 2013
Edward H. Schuchman; Yi Ge; Alon Lai; Yury Borisov; Meghan Faillace; Efrat Eliyahu; Xingxuan He; James C. Iatridis; Helen Vlassara; Gary E. Striker; Calogera M. Simonaro
Background Pentosan polysulfate (PPS) is an FDA-approved, oral medication with anti-inflammatory and pro-chondrogenic properties. We have previously shown that animal models of the mucopolysaccharidoses (MPS) exhibit significant inflammatory disease, contributing to cartilage degeneration. Enzyme replacement therapy (ERT) only partly reduced inflammation, and anti-TNF-alpha antibody therapy significantly enhanced clinical and pathological outcomes. Here we describe the use of PPS for the treatment of MPS type VI rats. Methodology/Principal Findings Treatment began during prenatal development and at 1 and 6 months of age. All animals were treated until they were 9 months old. Significant reductions in the serum and tissue levels of several inflammatory markers (e.g., TNF-alpha, MIP-1alpha and RANTES/CCL5) were observed, as was reduced expression of inflammatory markers in cultured articular chondrocytes. ADAMTS-5/aggrecanase-2 levels also were reduced in chondrocytes, consistent with an elevation of serum tissue inhibitor of metalloproteinase 1. Marked improvements in motility and grooming behavior occurred, along with a reduction in eye and nasal secretions and a lessening of the tracheal deformities. MicroCT and radiographic analyses further revealed that the treated MPS skulls were longer and thinner, and that the teeth malocclusions, misalignments and mineral densities were improved. MicroCT analysis of the femurs and vertebrae revealed improvements in trabecular bone mineral densities, number and spacing in a subset of treated MPS animals. Biomechanical assessments of PPS-treated spines showed partially restored torsional behaviors, suggesting increased spinal stability. No improvements were observed in cortical bone or femur length. The positive changes in the PPS-treated MPS VI rats occurred despite glycosaminoglycan accumulation in their tissues. Conclusions Based on these findings we conclude that PPS could be a simple and effective therapy for MPS that might provide significant clinical benefits alone and in combination with other therapies.
Embo Molecular Medicine | 2013
Abdulfatah Alayoubi; James Cm M. Wang; Bryan Au; Stéphane Carpentier; Virginie Garcia; Shaalee Dworski; Samah El-Ghamrasni; Kevin N. Kirouac; Mathilde J. Exertier; Zi Jian Xiong; Gilbert G. Privé; Calogera M. Simonaro; Josefina Casas; Gemma Fabriàs; Edward H. Schuchman; Patricia V. Turner; Razqallah Hakem; Thierry Levade; Jeffrey A. Medin
Farber disease (FD) is a severe inherited disorder of lipid metabolism characterized by deficient lysosomal acid ceramidase (ACDase) activity, resulting in ceramide accumulation. Ceramide and metabolites have roles in cell apoptosis and proliferation. We introduced a single‐nucleotide mutation identified in human FD patients into the murine Asah1 gene to generate the first model of systemic ACDase deficiency. Homozygous Asah1P361R/P361R animals showed ACDase defects, accumulated ceramide, demonstrated FD manifestations and died within 7–13 weeks. Mechanistically, MCP‐1 levels were increased and tissues were replete with lipid‐laden macrophages. Treatment of neonates with a single injection of human ACDase‐encoding lentivector diminished the severity of the disease as highlighted by enhanced growth, decreased ceramide, lessened cellular infiltrations and increased lifespans. This model of ACDase deficiency offers insights into the pathophysiology of FD and the roles of ACDase, ceramide and related sphingolipids in cell signaling and growth, as well as facilitates the development of therapy.
PLOS ONE | 2011
Efrat Eliyahu; Theodore Wolfson; Yi Ge; Karl J. Jepsen; Edward H. Schuchman; Calogera M. Simonaro
Background Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI. Methodology/Principal Findings MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates. Conclusions/Significance The results demonstrate that combining ERT with anti-TNF- alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted.
Gene Therapy | 1999
Calogera M. Simonaro; Mark E. Haskins; Janis L. Abkowitz; Brooks Da; John J. Hopwood; Zhang J; Edward H. Schuchman
Autologous transplantation of retrovirally transduced bone marrow (BM) or neonatal blood cells was carried out on eight cats (ranging in age from 2 weeks to 12 months) with mucopolysaccharidosis type VI (MPS VI). The transducing vector contained the full-length cDNA encoding human arylsulfatase B (hASB), the enzymatic activity deficient in this lysosomal storage disorder. Following transplantation, the persistence of transduced cells and enzymatic expression were monitored for more than 2 years. Five of the cats received no myeloablative preconditioning, two cats received 370–390 cGy of total body irradiation (TBI), and one cat received 190 cGy TBI. Evidence of transduced cells, as judged by enzymatic activity and PCR detection of the provirus, was demonstrated in granulocytes, lymphocytes, or BM cells of the treated animals up to 31 months after transplantation. Radiation preconditioning was not required to achieve these results, nor were they dependent on the recipient’s age. However, despite the long-term persistence of transduced cells, the levels of ASB activity in the transplanted animals was low, and no clinical improvements were detected. These data provide evidence for the long-term persistence of retrovirally transduced feline hematopoietic cells, and further documentation that engraftment of transduced cells can be achieved in the absence of myeloablation. Consistent with previous bone marrow transplantation studies, these results also suggest that to achieve clinical improvement of MPS VI, particularly in the skeletal system, high-level expression of ASB must be achieved in the treated animals and improved techniques for targeting the expressed enzyme to specific sites of pathology (eg chondrocytes) must be developed.
Journal of pediatric rehabilitation medicine | 2010
Calogera M. Simonaro
The mucopolysaccharidoses are a family of genetic diseases each caused by a defect in a lysosomal enzyme responsible for degradation of glycosaminoglycan (GAG) [11]. Failure of effective metabolism results in abnormal storage of GAG fragments, cell injury and death, and inflammatory responses. Because glycosaminoglycans are fundamental in connective tissue structure and function, the MPS disorders are characterized by severe skeletal abnormality including growth failure, abnormal bone structure (dysostosis multiplex), and severe articular cartilage and joint disease. Although enzyme replacement therapy (ERT) is currently available for three of the mucopolysaccharidoses (MPS), there have been limited effects on bone and cartilage. Thus, new treatment approaches are clearly needed for these tissues, alone or as adjuncts to ERT. Previous studies in MPS animal models showed that inflammation is a critical aspect of these disorders, secondary to GAG accumulation [14,15,17]. As part of