Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Calvin B. Harley is active.

Publication


Featured researches published by Calvin B. Harley.


The EMBO Journal | 1992

Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity

Christopher M. Counter; Ariel A. Avilion; Catherine E. LeFeuvre; Nancy Stewart; Carol W. Greider; Calvin B. Harley; Silvia Bacchetti

Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.


Mutation Research | 1991

Telomere loss: mitotic clock or genetic time bomb?

Calvin B. Harley

The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theorys premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.


Nature Reviews Cancer | 2008

Telomerase and cancer therapeutics

Calvin B. Harley

Telomerase is an attractive cancer target as it appears to be required in essentially all tumours for immortalization of a subset of cells, including cancer stem cells. Moreover, differences in telomerase expression, telomere length and cell kinetics between normal and tumour tissues suggest that targeting telomerase would be relatively safe. Clinical trials are ongoing with a potent and specific telomerase inhibitor, GRN163L, and with several versions of telomerase therapeutic vaccines. The prospect of adding telomerase-based therapies to the growing list of new anticancer products is promising, but what are the advantages and limitations of different approaches, and which patients are the most likely to respond?


AIDS | 1996

Shortened telomeres in the expanded CD28- CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis

Rita B. Effros; Richard C. Allsopp; Choy-Pik Chiu; Mary Ann Hausner; Karim F. Hirji; Lili Wang; Calvin B. Harley; Bryant Villeponteau; Michael D. West; Janis V. Giorgi

OBJECTIVE To test the hypothesis that the expanded population of non-proliferative CD28-CD8+ T cells in HIV disease have shortened telomeres, thereby providing evidence that increased rounds of CD8+ cell division occur during HIV disease, possibly leading to replicative senescence and exhaustion of CD8+ T-cell responses. DESIGN CD8+ cells play a central role in control of HIV infection. In late HIV disease, an expanded population of CD28-CD8+ cells with reduced proliferative potential has been documented. A similar population of CD28-CD8+ cells has been identified in ageing humans, where telomere length measurements have suggested that these cells have reached the irreversible state of replicative senescence. METHODS CD8+ cells from HIV-infected and control subjects were sorted by flow cytometry into CD28+ and CD28- fractions. Telomere lengths were determined as mean terminal restriction fragment (TRF) lengths by Southern hybridization. RESULTS The TRF lengths of sorted CD28-CD8+ cells in HIV-infected subjects ranged between 5 and 7 kilobases (kb) and were significantly shorter than TRF lengths of CD28-CD8+ cells in uninfected subjects (P = 0.003). The TRF length in CD28-CD8+ cells from HIV-infected subjects was the same as that observed for centenarian peripheral blood mononuclear cells and is compatible with a state of replicative senescence. CONCLUSIONS The shortened telomeres in the CD28-CD8+ cells in HIV-infected subjects and the poor proliferative potential of these cells identifies CD8+ cell replicative senescence as a newly described feature of HIV disease. Our results provide a mechanism for the loss of CD8+ cell control of viral replication that accompanies advanced HIV disease. Replicative senescence may contribute to exhaustion of the T-cell response as a result of chronic HIV disease. Whether this phenomenon occurs in other chronic viral infections is unknown.


Stem Cells | 1996

Differential Expression of Telomerase Activity in Hematopoietic Progenitors from Adult Human Bone Marrow

Choy-Pik Chiu; Wieslawa Dragowska; Nam Woo Kim; Homayoun Vaziri; Jane Yui; Terry E. Thomas; Calvin B. Harley; Peter M. Lansdorp

The loss of telomeric DNA may serve as a mitotic clock which signals cell senescence and exit from cell cycle. Telomerase, an enzyme which synthesizes telomeric repeats de novo, is required to maintain telomere lengths. In humans, significant telomerase activity has been found in cells with essentially unlimited replicative potential such as reproductive cells in ovaries and testes, immortal cell lines and cancer tissues, but not in most normal somatic cells or tissues. We have now examined telomerase expression in subpopulations of hematopoietic cells from adult human bone marrow using a sensitive polymerase chain reaction‐based telomeric repeat amplification protocol. Telomerase activity was found at low levels in the highly enriched primitive hematopoietic cells (CD34+CD71loCD45RAlo) and was increased transiently when these cells were cultured in the presence of a mixture of cytokines. In contrast, the early progenitors (CD34+CD71+) expressed telomerase activity at a higher level which was subsequently downregulated in response to cytokines. Telomerase activity remained low in the more mature CD34− cells upon exposure to cytokines. Taken together, our results suggest that telomerase is expressed at a basal level in all hematopoietic cell populations examined, is induced in a primitive subset of hematopoietic progenitor cells and is downregulated upon further proliferation and differentiation of these cells. We have previously observed telomere shortening in cytokine‐stimulated primitive hematopoietic cells. The low and transient activation of telomerase activity described here thus appears insufficient to maintain telomere lengths in cultured hematopoietic cells.


Current Opinion in Genetics & Development | 1995

Telomeres and telomerase in aging and cancer.

Calvin B. Harley; Bryant Villeponteau

Telomeres are maintained by the novel ribonucleoprotein enzyme telomerase. Telomerase activity is repressed in most somatic human cells, leading to telomere loss during replicative aging in vivo and in vitro. However, telomerase appears to be reactivated in essentially all human cancers. With the recent cloning of the RNA component of telomerase from several species, the stage is now set for critical tests of the role of telomeres and telomerase in aging and cancer.


Nature Protocols | 2010

Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths

Masayuki Kimura; Rivka C. Stone; Steven C. Hunt; Joan Skurnick; Xiaobin Lu; Xiaojian Cao; Calvin B. Harley; Abraham Aviv

In this protocol we describe a method to obtain telomere length parameters using Southern blots of terminal restriction fragments (TRFs). We use this approach primarily for epidemiological studies that examine leukocyte telomere length. However, the method can be adapted for telomere length measurements in other cells whose telomere lengths are within its detection boundaries. After extraction, DNA is inspected for integrity, digested, resolved by gel electrophoresis, transferred to a membrane, hybridized with labeled probes and exposed to X-ray film using chemiluminescence. Although precise and highly accurate, the method requires a considerable amount of DNA (3 μg per sample) and it measures both the canonical and noncanonical components of telomeres. The method also provides parameters of telomere length distribution in each DNA sample, which are useful in answering questions beyond those focusing on the mean length of telomeres in a given sample. A skilled technician can measure TRF length in ∼130 samples per week.


Experimental Biology and Medicine | 1997

Replicative senescence and cell immortality: the role of telomeres and telomerase.

Choy-Pik Chiu; Calvin B. Harley

Abstract Telomere shortening is correlated with cell senescence in vitro and cell aging in vivo. The telomere hypothesis suggests that telomere length serves as a mitotic clock for timing cellular replicative life span. Expression of telomerase stabilizes telomere length and allows for continual replication, or cell immortality. This article reviews recent evidences for the role of telomere length and telomerase in the regulation of cellular replicative life span. The therapeutic potential of manipulating telomerase expression and telomere length is also discussed.


Oncogene | 2005

Lipid modification of GRN163, an N3' ¿ P5' thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition

Brittney Shea Herbert; Ginelle C. Gellert; Amelia E. Hochreiter; Krisztina Pongracz; Woodring E. Wright; Daria Zielinska; Allison C. Chin; Calvin B. Harley; Jerry W. Shay; Sergei M. Gryaznov

The vast majority of human cancers express telomerase activity, while most human somatic cells do not have detectable telomerase activity. Since telomerase plays a critical role in cell immortality, it is an attractive target for a selective cancer therapy. Oligonucleotides complementary to the RNA template region of human telomerase (hTR) have been shown to be effective inhibitors of telomerase and, subsequently, cancer cell growth in vitro. We show here that a lipid-modified N3′ → P5′ thio-phosphoramidate oligonucleotide (GRN163L) inhibits telomerase more potently than its parental nonconjugated thio-phosphoramidate sequence (GRN163). Cells were treated with both the first- (GRN163) and second-generation (GRN163L) oligonucleotides, including a mismatch control, with or without a transfection enhancer reagent. GRN163L inhibited telomerase activity effectively in a dose-dependent manner, even without the use of a transfection reagent. The IC50 values for GRN163 in various cell lines were on average sevenfold higher than for GRN163L. GRN163L inhibition of telomerase activity resulted in a more rapid loss of telomeres and cell growth than GRN163. This report is the first to show that lipid modification enhanced the potency of the novel GRN163 telomerase inhibitor. These results suggest that the lipid-conjugated thio-phosphoramidates could be important for improved pharmacodynamics of telomerase inhibitors in cancer therapy.


Oncogene | 2002

Telomerase is not an oncogene.

Calvin B. Harley

In the decade since the telomere hypothesis of cellular aging was proposed, the two essential genes for human telomerase were cloned and characterized, allowing experimental proof of the causal relationships between telomere loss and replicative senescence, and telomerase activation and immortalization. These relationships were established using a variety of cultured human cell types from both normal and tumor tissues, and were largely confirmed in the telomerase knockout mouse. Taken together, the data provide strong support for the potential utility of telomerase detection and inhibition for cancer, and telomerase activation for degenerative diseases. The specificity of the promoter for the telomerase catalytic gene and the antigenicity of the protein product, hTERT, provide additional strategies for killing telomerase-positive tumor cells. Unfortunately, the strong link between telomerase and cancer has led some to confuse telomerase activation with cancer, and others to overstate the cancer risk of telomerase activation therapies for degenerative diseases. This review clarifies the difference between telomerase, which does not cause growth deregulation, and oncogenes, which do. It also addresses the concept of telomerase repression as a tumor suppressor mechanism early in life, with detrimental tissue degeneration and tumor-promoting consequences late in life. This extended view of the telomere hypothesis helps explain how telomerase inhibition can be therapeutic in cancer patients, while controlled telomerase activation for degenerative diseases may actually reduce, rather than increase, the frequency of age-related tumorigenesis.

Collaboration


Dive into the Calvin B. Harley's collaboration.

Top Co-Authors

Avatar

William H. Andrews

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Cech

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Joachim Lingner

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Gregg B. Morin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru M. Nakamura

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge