Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Calvin Dytham is active.

Publication


Featured researches published by Calvin Dytham.


Biological Reviews | 2012

Costs of dispersal

Dries Bonte; Hans Van Dyck; James M. Bullock; Aurélie Coulon; María del Mar Delgado; Melanie Gibbs; Valérie Lehouck; Erik Matthysen; Karin Mustin; Marjo Saastamoinen; Nicolas Schtickzelle; Virginie M. Stevens; Sofie Vandewoestijne; Michel Baguette; Kamil A. Bartoń; Tim G. Benton; Audrey Chaput-Bardy; Jean Clobert; Calvin Dytham; Thomas Hovestadt; Christoph M. Meier; Stephen C. F. Palmer; Camille Turlure; Justin M. J. Travis

Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal event through investments in special morphologies. Because costs will eventually determine the performance of dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types that occur during dispersal in a wide array of organisms, ranging from micro‐organisms to plants, invertebrates and vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs related to the development of specific dispersal attributes appear to be much more prominent than previously accepted. Because costs induce trade‐offs, they give rise to covariation between dispersal and other life‐history traits at different scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different phases of the dispersal process, and (ii) their internal organisation through covariation with other life‐history traits, are synthesised with respect to potential consequences for species conservation and the need for development of a new generation of spatial simulation models.


The ISME Journal | 2010

Relative roles of niche and neutral processes in structuring a soil microbial community

Alex J. Dumbrell; Michaela Nelson; Thorunn Helgason; Calvin Dytham; A. H. Fitter

Most attempts to identify the processes that structure natural communities have focused on conspicuous macroorganisms whereas the processes responsible for structuring microbial communities remain relatively unknown. Two main theories explaining these processes have emerged; niche theory, which highlights the importance of deterministic processes, and neutral theory, which focuses on stochastic processes. We examined whether neutral or niche-based mechanisms best explain the composition and structure of communities of a functionally important soil microbe, the arbuscular mycorrhizal (AM) fungi. Using molecular techniques, we surveyed AM fungi from 425 individual plants of 28 plant species along a soil pH gradient. There was evidence that both niche and neutral processes structured this community. Species abundances fitted the zero-sum multinomial distribution and there was evidence of dispersal limitation, both indicators of neutral processes. However, we found stronger support that niche differentiation based on abiotic soil factors, primarily pH, was structuring the AM fungal community. Host plant species affected AM fungal community composition negligibly compared to soil pH. We conclude that although niche partitioning was the primary mechanism regulating the composition and diversity of natural AM fungal communities, these communities are also influenced by stochastic-neutral processes. This study represents one of the most comprehensive investigations of community-level processes acting on soil microbes; revealing a community that although influenced by stochastic processes, still responded in a predictable manner to a major abiotic niche axis, soil pH. The strong response to environmental factors of this community highlights the susceptibility of soil microbes to environmental change.


Proceedings of the Royal Society of London B: Biological Sciences | 1999

Habitat persistence, habitat availability and the evolution of dispersal

Justin M. J. Travis; Calvin Dytham

Many organisms live in ephemeral habitats, making dispersal a vital element of life history. Here, we investigate how dispersal rate evolves in response to habitat persistence, mean habitat availability and landscape pattern. We show that dispersal rate is generally lowered by reduced habitat availability and by longer habitat persistence. However, for habitats that persist for an average of ten times the length of a generation, we show a clear non–monotonic relationship between habitat availability and dispersal rate. Some patterns of available habitat result in populations with dispersal polymorphisms. We explain these observations as a metapopulation effect, with the rate of evolution a function of both within–population and between–population selection pressures. Individuals in corridors evolve much lower dispersal rates than those in the mainland populations, especially within long, narrow corridors. We consider the implications of the results for conservation.


New Phytologist | 2011

Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing

Alex J. Dumbrell; Peter D. Ashton; Naveed Aziz; Gu Feng; Michaela Nelson; Calvin Dytham; A. H. Fitter; Thorunn Helgason

• Understanding the dynamics of rhizosphere microbial communities is essential for predicting future ecosystem function, yet most research focuses on either spatial or temporal processes, ignoring combined spatio-temporal effects. • Using pyrosequencing, we examined the spatio-temporal dynamics of a functionally important community of rhizosphere microbes, the arbuscular mycorrhizal (AM) fungi. We sampled AM fungi from plant roots growing in a temperate grassland in a spatially explicit manner throughout a year. • Ordination analysis of the AM fungal assemblages revealed significant temporal changes in composition and structure. Alpha and beta diversity tended to be negatively correlated with the climate variables temperature and sunshine hours. Higher alpha diversity during colder periods probably reflects more even competitive interactions among AM fungal species under limited carbon availability, a conclusion supported by analysis of beta diversity which highlights how resource limitation may change localized spatial dynamics. • Results reveal distinct AM fungal assemblages in winter and summer at this grassland site. A seasonally changing supply of host-plant carbon, reflecting changes in temperature and sunshine hours, may be the driving force in regulating the temporal dynamics of AM fungal communities. Climate change effects on seasonal temperatures may therefore substantially alter future AM fungal community dynamics and ecosystem functioning.


PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 266 (1431) pp. 1837-1842. (1999) | 1999

The evolution of density-dependent dispersal

Justin M. J. Travis; David J. Murrell; Calvin Dytham

Despite a large body of empirical evidence suggesting that the dispersal rates of many species depend on population density, most metapopulation models assume a density–independent rate of dispersal. Similarly, studies investigating the evolution of dispersal have concentrated almost exclusively on density–independent rates of dispersal. We develop a model that allows density–dependent dispersal strategies to evolve. Our results demonstrate that a density–dependent dispersal strategy almost always evolves and that the form of the relationship depends on reproductive rate, type of competition, size of subpopulation equilibrium densities and cost of dispersal. We suggest that future metapopulation models should account for density–dependent dispersal


Proceedings of the Royal Society of London B: Biological Sciences | 1998

The evolution of dispersal in a metapopulation: a spatially explicit, individual-based model

Justin M. J. Travis; Calvin Dytham

Dispersal is the process that binds the subpopulations of a metapopulation together. Previous models of the evolution of dispersal have tended to be deterministic and not spatially explicit. We develop an individual–based, spatially explicit lattice model to determine how subpopulation equilibrium density, reproductive rate and form of competition affect the rate of dispersal that is selected for. For comparison, a deterministic analogue of the individual–based model is also developed. Dispersal rate is a neutral character in the deterministic model. The individual–based model makes predictions which differ significantly from its deterministic counterpart, particularly when subpopulation equilibrium densities are low. Higher rates of dispersal evolve when reproductive rate is high and subpopulation equilibrium density is small. Our results demonstrate that the propensity to disperse is not a neutral character and that deterministic models of metapopulations should be interpreted with caution.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries

Clare L. Hughes; Jane K. Hill; Calvin Dytham

During recent climate warming, some species have expanded their ranges northwards to keep track of climate changes. Evolutionary changes in dispersal have been demonstrated in these expanding populations and here we show that increased dispersal is associated with reduced investment in reproduction in populations of the speckled wood butterfly, Pararge aegeria. Evolutionary changes in flight versus reproduction will affect the pattern and rate of expansion at range boundaries in the future, and understanding these responses will be crucial for predicting the distribution of species in the future as climates continue to warm.


Ecological Entomology | 2007

Modelling and analysing evolution of dispersal in populations at expanding range boundaries

Clare L. Hughes; Calvin Dytham; Jane K. Hill

Abstract 1. Species would be expected to shift northwards in response to current climate warming, but many are failing to do so because of fragmentation of breeding habitats. Dispersal is important for colonisation and an individual‐based spatially explicit model was developed to investigate impacts of habitat availability on the evolution of dispersal in expanding populations. Model output was compared with field data from the speckled wood butterfly Pararge aegeria, which currently is expanding its range in Britain.


Biology Letters | 2005

The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model

Justin M. J. Travis; R.W Brooker; Calvin Dytham

Positive interspecific interactions are commonplace, and in recent years ecologists have begun to realize how important they can be in determining community and ecosystem dynamics. It has been predicted that net positive interactions are likely to occur in environments characterized by high abiotic stress. Although empirical field studies have started to support these predictions, little theoretical work has been carried out on the dynamic nature of these effects and their consequences for community structure. We use a simple patch-occupancy model to simulate the dynamics of a pair of species living on an environmental gradient. Each of the species can exist as either a mutualist or a cheater. The results confirm the prediction: a band of mutualists tends to occur in environmental conditions beyond the limits of the cheaters. The region between mutualists and cheaters is interesting: population density here is low. Mutualists periodically occupy this area, but are displaced by cheaters, who themselves go extinct in the absence of the mutualists. Furthermore, the existence of mutualists extends the area occupied by the cheaters, essentially increasing their realized niche. Our approach has considerable potential for improving our understanding of the balance between positive and negative interspecific interactions and for predicting the probable impacts of habitat loss and climate change on communities dominated by positive interspecific interactions.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Evolved dispersal strategies at range margins

Calvin Dytham

Dispersal is a key component of a speciess ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting.

Collaboration


Dive into the Calvin Dytham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge