Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Calvin J. Kuo is active.

Publication


Featured researches published by Calvin J. Kuo.


Journal of Experimental Medicine | 2006

A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development

Jennifer M. Burns; Bretton C. Summers; Yu Wang; Anita Melikian; Rob Berahovich; Zhenhua Miao; Mark E.T. Penfold; Mary Jean Sunshine; Dan R. Littman; Calvin J. Kuo; Kevin Wei; Brian E. Mcmaster; Kim Wright; Maureen Howard; Thomas J. Schall

The chemokine stromal cell–derived factor (SDF-1; also known as chemokine ligand 12 [CXCL12]) regulates many essential biological processes, including cardiac and neuronal development, stem cell motility, neovascularization, angiogenesis, apoptosis, and tumorigenesis. It is generally believed that SDF-1 mediates these many disparate processes via a single cell surface receptor known as chemokine receptor 4 (CXCR4). This paper characterizes an alternate receptor, CXCR7, which binds with high affinity to SDF-1 and to a second chemokine, interferon-inducible T cell α chemoattractant (I-TAC; also known as CXCL11). Membrane-associated CXCR7 is expressed on many tumor cell lines, on activated endothelial cells, and on fetal liver cells, but on few other cell types. Unlike many other chemokine receptors, ligand activation of CXCR7 does not cause Ca2+ mobilization or cell migration. However, expression of CXCR7 provides cells with a growth and survival advantage and increased adhesion properties. Consistent with a role for CXCR7 in cell survival and adhesion, a specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.


Cell | 1992

Rapamycin-FKBP Specifically Blocks Growth-Dependent Activation of and Signaling by the 70 kd S6 Protein Kinases

Jongkyeong Chung; Calvin J. Kuo; Gerald R. Crabtree; John Blenis

The macrolide rapamycin blocks cell cycle progression in yeast and various animal cells by an unknown mechanism. We demonstrate that rapamycin blocks the phosphorylation and activation of the 70 kd S6 protein kinases (pp70S6K) in a variety of animal cells. The structurally related drug FK506 had no effect on pp70S6K activation but at high concentrations reversed the rapamycin-induced block, confirming the requirement for the rapamycin and FK506 receptor, FKBP. Rapamycin also interfered with signaling by these S6 kinases, blocking serum-stimulated S6 phosphorylation and delaying entry of Swiss 3T3 cells into S phase. Neither rapamycin nor FK506 blocked activation of a distinct family of S6 kinases (RSKs) or the MAP kinases. These studies identify a rapamycin-sensitive signaling pathway, argue for a ubiquitous role for FKBPs in signal transduction, indicate that FK506-FKBP-calcineurin complexes do not interfere with pp70S6K signaling, and show that in fibroblasts pp70S6K, not RSK, is the physiological S6 kinase.


European Journal of Neuroscience | 2003

VEGF is necessary for exercise‐induced adult hippocampal neurogenesis

Klaus Fabel; Konstanze Fabel; Betty Y. Y. Tam; Daniela Kaufer; Armin Baiker; Natalie Renee Simmons; Calvin J. Kuo; Theo D. Palmer

Declining learning and memory function is associated with the attenuation of adult hippocampal neurogenesis. As in humans, chronic stress or depression in animals is accompanied by hippocampal dysfunction, and neurogenesis is correspondingly down regulated, in part, by the activity of the hypothalamic–pituitary–adrenal axis as well as glutamatergic and serotonergic networks. Antidepressants can reverse this effect over time but one of the most clinically effective moderators of stress or depression and robust stimulators of neurogenesis is simple voluntary physical exercise such as running. Curiously, running also elevates circulating stress hormone levels yet neurogenesis is doubled in running animals. In evaluating the signalling that running provides to the central nervous system in mice, we have found that peripheral vascular endothelial growth factor (VEGF) is necessary for the effects of running on adult hippocampal neurogenesis. Peripheral blockade of VEGF abolished running‐induced neurogenesis but had no detectable effect on baseline neurogenesis in non‐running animals. These data suggest that VEGF is an important element of a ‘somatic regulator’ of adult neurogenesis and that these somatic signalling networks can function independently of the central regulatory networks that are typically considered in the context of hippocampal neurogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1

Frank Kuhnert; Corrine R. Davis; Hsiao-Ting Wang; Pauline Chu; Mark Lee; Jenny Yuan; Roel Nusse; Calvin J. Kuo

Whereas the adult gastrointestinal epithelium undergoes tremendous self-renewal through active proliferation in crypt stem cell compartments, the responsible growth factors regulating this continuous proliferation have not been defined. The exploration of physiologic functions of Wnt proteins in adult organisms has been hampered by functional redundancy and the necessity for conditional inactivation strategies. Dickkopf-1 (Dkk1) is a potent secreted Wnt antagonist that interacts with Wnt coreceptors of the LRP family. To address the contribution of Wnt signaling to gastrointestinal epithelial proliferation, adenoviral expression of Dkk1 was used to achieve stringent, conditional, and reversible Wnt inhibition in adult animals. Adenovirus Dkk1 (Ad Dkk1) treatment of adult mice repressed expression of the Wnt target genes CD44 and EphB2 within 2 days in both small intestine and colon, indicating an extremely broad role for Wnt signaling in the maintenance of adult gastrointestinal gene expression. In parallel, Ad Dkk1 markedly inhibited proliferation in small intestine and colon, accompanied by progressive architectural degeneration with the loss of crypts, villi, and glandular structure by 7 days. Whereas decreased Dkk1 expression at later time points (>10 days) was followed by crypt and villus regeneration, which was consistent with a reversible process, substantial mortality ensued from colitis and systemic infection. These results indicate the efficacy of systemic expression of secreted Wnt antagonists as a general strategy for conditional inactivation of Wnt signaling in adult organisms and illustrate a striking reliance on a single growth factor pathway for the maintenance of the architecture of the adult small intestine and colon.


Nature Medicine | 2009

Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche

Akifumi Ootani; Xingnan Li; Eugenio Sangiorgi; Quoc T. Ho; Hiroo Ueno; Shuji Toda; Hajime Sugihara; Kazuma Fujimoto; Irving L. Weissman; Mario R. Capecchi; Calvin J. Kuo

The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the γ-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein–coupled receptor-5–positive (Lgr5+) and B lymphoma moloney murine leukemia virus insertion region homolog-1–positive (Bmi1+) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5+ cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations

Kelley S. Yan; Luis A. Chia; Xingnan Li; Akifumi Ootani; James Su; Josephine Y. Lee; Nan Su; Yuling Luo; Sarah C. Heilshorn; Manuel R. Amieva; Eugenio Sangiorgi; Mario R. Capecchi; Calvin J. Kuo

The small intestine epithelium undergoes rapid and continuous regeneration supported by crypt intestinal stem cells (ISCs). Bmi1 and Lgr5 have been independently identified to mark long-lived multipotent ISCs by lineage tracing in mice; however, the functional distinctions between these two populations remain undefined. Here, we demonstrate that Bmi1 and Lgr5 mark two functionally distinct ISCs in vivo. Lgr5 marks mitotically active ISCs that exhibit exquisite sensitivity to canonical Wnt modulation, contribute robustly to homeostatic regeneration, and are quantitatively ablated by irradiation. In contrast, Bmi1 marks quiescent ISCs that are insensitive to Wnt perturbations, contribute weakly to homeostatic regeneration, and are resistant to high-dose radiation injury. After irradiation, however, the normally quiescent Bmi1+ ISCs dramatically proliferate to clonally repopulate multiple contiguous crypts and villi. Clonogenic culture of isolated single Bmi1+ ISCs yields long-lived self-renewing spheroids of intestinal epithelium that produce Lgr5-expressing cells, thereby establishing a lineage relationship between these two populations in vitro. Taken together, these data provide direct evidence that Bmi1 marks quiescent, injury-inducible reserve ISCs that exhibit striking functional distinctions from Lgr5+ ISCs and support a model whereby distinct ISC populations facilitate homeostatic vs. injury-induced regeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis

Richard Daneman; Dritan Agalliu; Lu Zhou; Frank Kuhnert; Calvin J. Kuo; Ben A. Barres

Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood−brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/β-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/β-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/β-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/β-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/β-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer

Calvin J. Kuo; Filip Farnebo; Evan Y. Yu; Rolf Christofferson; Rebecca A. Swearingen; Robert Carter; Horst A. von Recum; Jenny Yuan; Junne Kamihara; Evelyn Flynn; Robert J. D'Amato; Judah Folkman; Richard C. Mulligan

Although the systemic administration of a number of different gene products has been shown to result in the inhibition of angiogenesis and tumor growth in different animal tumor models, the relative potency of those gene products has not been studied rigorously. To address this issue, recombinant adenoviruses encoding angiostatin, endostatin, and the ligand-binding ectodomains of the vascular endothelial growth factor receptors Flk1, Flt1, and neuropilin were generated and used to systemically deliver the different gene products in several different preexisting murine tumor models. Single i.v. injections of viruses encoding soluble forms of Flk1 or Flt1 resulted in ≈80% inhibition of preexisting tumor growth in murine models involving both murine (Lewis lung carcinoma, T241 fibrosarcoma) and human (BxPC3 pancreatic carcinoma) tumors. In contrast, adenoviruses encoding angiostatin, endostatin, or neuropilin were significantly less effective. A strong correlation was observed between the effects of the different viruses on tumor growth and the activity of the viruses in the inhibition of corneal micropocket angiogenesis. These data underscore the need for comparative analyses of different therapeutic approaches that target tumor angiogenesis and provide a rationale for the selection of specific antiangiogenic gene products as lead candidates for use in gene therapy approaches aimed at the treatment of malignant and ocular disorders.


Nature | 2009

Endochondral ossification is required for haematopoietic stem-cell niche formation

Charles K. Chan; Ching-Cheng Chen; Cynthia A. Luppen; Jae-Beom Kim; Anthony T. DeBoer; Kevin Wei; Jill A. Helms; Calvin J. Kuo; Daniel Kraft; Irving L. Weissman

Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45-Tie2-αV+CD105+Thy1.1- (CD105+Thy1-) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45-Tie2-αV+CD105+Thy1+ (CD105+Thy1+) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105+Thy1- progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.


Development | 2008

Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126

Frank Kuhnert; Michael R. Mancuso; Jessica Hampton; Kryn Stankunas; Tomoichiro Asano; Chang-Zheng Chen; Calvin J. Kuo

Intronic microRNAs have been proposed to complicate the design and interpretation of mouse knockout studies. The endothelial-expressed Egfl7/miR-126 locus contains miR-126 within Egfl7 intron 7, and angiogenesis deficits have been previously ascribed to Egfl7 gene-trap and lacZ knock-in mice. Surprisingly, selectively floxed Egfl7Δ and miR-126Δ alleles revealed that Egfl7Δ/Δ mice were phenotypically normal, whereas miR-126Δ/Δ mice bearing a 289-nt microdeletion recapitulated previously described Egfl7 embryonic and postnatal retinal vascular phenotypes. Regulation of angiogenesis by miR-126 was confirmed by endothelial-specific deletion and in the adult cornea micropocket assay. Furthermore, miR-126 deletion inhibited VEGF-dependent Akt and Erk signaling by derepression of the p85β subunit of PI3 kinase and of Spred1, respectively. These studies demonstrate the regulation of angiogenesis by an endothelial miRNA, attribute previously described Egfl7 vascular phenotypes to miR-126, and document inadvertent miRNA dysregulation as a complication of mouse knockout strategies.

Collaboration


Dive into the Calvin J. Kuo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Wei

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge