Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camelia Bala is active.

Publication


Featured researches published by Camelia Bala.


Biosensors and Bioelectronics | 2011

A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel.

Lucian-Gabriel Zamfir; Lucian Rotariu; Camelia Bala

A novel, low potential and highly sensitive acetylcholinesterase (AChE) biosensor was developed based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotube composite gel thiocholine sensor. Composite gel promoted electron transfer reaction at a lower potential (+50 mV) and catalyzed electrochemical oxidation of thiocholine with high sensitivity. AChE was immobilized in sol-gel matrix that provides a good support for enzyme without any inhibition effect from the ionic liquid. The amount of immobilized enzyme and incubation time with chlorpyrifos were optimized. Chlorpyrifos could be determined in the range of 10(-8)-10(-6)M with a detection limit of 4 nM. Fast and efficient enzyme reactivation was obtained at low obidoxime concentration (0.1mM). Moreover, the biosensor exhibited a good stability and reproducibility and could be use for multiple determinations of pesticide with no loss of the enzyme activity.


Biosensors and Bioelectronics | 2009

Development of a bio-electrochemical assay for AFB1 detection in olive oil.

Ines Ben Rejeb; Fabiana Arduini; Adina Arvinte; Aziz Amine; Mohamed Gargouri; Laura Micheli; Camelia Bala; Danila Moscone; Giuseppe Palleschi

A novel biosensor assay format for aflatoxin based on acetylcholinesterase (AChE) inhibition by aflatoxin B(1) (AFB(1)) is proposed. The AChE was present in solution and an amperometric choline oxidase biosensor was used for monitoring its residual activity. To create the biosensor, the choline oxidase was immobilized by cross-linking onto screen-printed electrodes modified with Prussian Blue (PB) and these were used to detect the H(2)O(2) at low potential (-0.05V versus a screen-printed internal silver pseudoreference electrode). For the development of the AFB(1) assay, several parameters such as AChE and substrate concentration, the methanol effect, and pH were evaluated and optimized. The linear working range was assessed to be 10-60ppb. Concentrations as low as 2ppb, which correspond to the legal limit of AFB(1) in food for humans, were detected after a pre-concentration step. The suitability of the method was evaluated using commercial olive oil samples. A recovery equal to 78+/-9% for 10ppb of AFB(1) in olive oil samples was obtained.


Critical Reviews in Analytical Chemistry | 2015

Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis

Andreea Olaru; Camelia Bala; Nicole Jaffrezic-Renault; Hassan Y. Aboul-Enein

This review aims to highlight the applications of one of the most prominent optical biosensor technologies, surface plasmon resonance (SPR), in the drug discovery process and quality analysis of pharmaceutical compounds and their particularities. SPR assay formats and experimental issues are used for pharmacokinetic drug profiling, ADMET studies, high-throughput screening, and fragment-based drug screening, the last with an emphasis on the detection of small (drug) molecules. The classical method strengths and some applications of localized SPR and SPR imaging that are of high interest in the drug discovery process are presented, as well as possible challenges. While similar works treat separately the steps of drug discovery or focus only on the detection of drug residues in food or health safety, this review presents in a compact format the results and the progress obtained in both areas (drug discovery and quality analysis) based on the application of SPR biosensors.


Biosensors and Bioelectronics | 2003

Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors

Alina Vasilescu; Silvana Andreescu; Camelia Bala; Simona Carmen Litescu; Thierry Noguer; Jean-Louis Marty

Electropolymerization of Meldola Blue was carried out by cyclic voltammetry in the range from -0.6 to +1.4 V vs. Ag/AgCl, thus defining a new immobilization procedure of the phenoxazine mediator on screen-printed graphite electrodes. Evidence of polymer formation was provided by electrochemical and Fourier transform infrared spectroscopy (FTIR) data. Following polymerization, Meldola Blue preserved the ability to catalyze NADH oxidation allowing to achieve a detection limit of 2.5 x 10(-6) mol l(-1) and a sensitivity of 3713 microA l mol(-1) in amperometric determinations at 0 V vs. Ag/AgCl. In addition, the polymeric mediator was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase. Typical calibration at -0.1 V vs. Ag/AgCl shows a detection limit of 8.5 x 10(-5) mol l(-1), a sensitivity of 494 microA l mol(-1) and a linear range from 2.5 x 10(-4) to 5 x 10(-3) mol l(-1) hydrogen peroxide.


Biosensors and Bioelectronics | 2015

A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker

Sawsen Azzouzi; Lucian Rotariu; Ana M. Benito; Wolfgang K. Maser; Mounir Ben Ali; Camelia Bala

In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating both enzyme and RGO-AuNPs in a sol gel matrix derived from tetrametoxysilane and methyltrimetoxysilane. The enzyme loading, working pH, and coenzyme concentration were optimized. The biosensor linearly responded to l-lactate in the range of 10µM-5mM and showed a good specific sensitivity of 154µA/mMcm(2) with a detection limit of 0.13µM. This was accompanied by good reproducibility and operational stability. Tests on artificial serum proved that l-lactate can be determined practically without interferences from commonly interfering compounds such as urate, paracetamol and l-ascorbate. Our LDH/RGO-AuNPs/SPCE based biosensor thus performs as electrochemical device for the detection of l-lactate as a viable early cancer bio-marker.


Analytical Biochemistry | 2012

Kinetic approach of aflatoxin B1-acetylcholinesterase interaction: a tool for developing surface plasmon resonance biosensors.

Mihaela Puiu; Oana Istrate; Lucian Rotariu; Camelia Bala

This work presents a kinetic approach of the interaction between acetylcholinesterase (AChE) from electric eel and aflatoxin B1 (AFB1) or its protein conjugate (e.g., AFB1-HRP [horseradish peroxidase]) in order to develop a simple and sensitive detection method of these compounds. The dissociation constant K(d) of the AChE/AFB1-HRP interaction (0.4 μM) obtained with the surface plasmon resonance (SPR) technique is very close to the inhibition constant reported in amperometric assay (K(i)=0.35 μM), proving that the conjugation of AFB1 to a carrier protein does not significantly influence the affinity of AFB1 for AChE. Thus, the AChE/AFB1-HRP couple can be used as mimic system for the binding of AChE to other AFB1-protein adducts and further used for developing biosensors for AFB1 bound to plasma proteins. The immobilization protocol was designed to minimize the nonspecific adsorption on the self-assembled monolayer (SAM) functionalized surface of the SPR chip without an additional hydrophilic linker, whereas the interaction protocol was designed to mark out the possible occurrence of mass transport limitation (MTL) effects. The detection limits (LODs) were 0.008 μM for AFB1-HRP (2.5 ng ml⁻¹ AFB1) and 0.94 ng ml⁻¹ for AFB1 itself, which is lower than recently reported values in spectrophotometric and amperometric assays.


Analytica Chimica Acta | 2012

A rational design of the multiwalled carbon nanotube-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors.

Lucian Rotariu; Lucian-Gabriel Zamfir; Camelia Bala

A new, simple and effective amperometric acetylcholinesterase biosensor was developed using screen-printed carbon electrodes modified with carbon nanotubes (MWCNTs)-7,7,8,8-tetracyanoquinodimethane (TCNQ). The design of the biosensor was based on the supramolecular arrangement resulted from the interaction of MWCNTs and TCNQ. This arrangement was confirmed by spectroscopic and electrochemical techniques. Two different supramolecular arrangements were proposed based on different MWCNTs:TCNQ ratios. The synergistic effect of MWCNTs and TCNQ was, for the first time, exploited for detection of thiocholine at low potential with high sensitivity. The biosensor developed by immobilization of acetylcholinesterase (AChE) in sol-gel allowed the detection of two reference AChE inhibitors, paraoxon-methyl and chlorpyrifos with detection limits of 30 pM (7 ppt) and 0.4 nM (0.1 ppb), respectively. Efficient enzyme reactivation was obtained by using obidoxime.


Sensors | 2016

SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events.

Mihaela Puiu; Camelia Bala

In this paper we review the underlying principles of the surface plasmon resonance (SPR) technique, particularly emphasizing its advantages along with its limitations regarding the ability to discriminate between the specific binding response and the interfering effects from biological samples. While SPR sensors were developed almost three decades, SPR detection is not yet able to reduce the time-consuming steps of the analysis, and is hardly amenable for miniaturized, portable platforms required in point-of-care (POC) testing. Recent advances in near-field optics have emerged, resulting in the development of SPR imaging (SPRi) as a powerful optical, label-free monitoring tool for multiplexed detection and monitoring of biomolecular events. The microarrays design of the SPRi chips incorporating various metallic nanostructures make these optofluidic devices more suitable for diagnosis and near-patient testing than the traditional SPR sensors. The latest developments indicate SPRi detection as being the most promising surface plasmon-based technique fulfilling the demands for implementation in lab-on-a-chip (LOC) technologies.


Talanta | 2011

Sensitive detection of endocrine disrupters using ionic liquid--single walled carbon nanotubes modified screen-printed based biosensors.

Ana-Maria Gurban; Lucian Rotariu; M. Baibarac; I. Baltog; Camelia Bala

Simple and low cost biosensor based on screen-printed electrode for sensitive detection of some alkylphenols was developed, by entrapment of HRP in a nanocomposite gel based on single-walled carbon nanotubes (SWCNTs) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. Raman and FTIR spectroscopy, CV and EIS studies demonstrate the interaction between SWCNTs and ionic liquid. The nanocomposite gel, SWCNT-[BMIM][PF(6)] provides to the modified sensor a considerable enhanced electrocatalytic activity toward hydrogen peroxide reduction. The HRP based biosensor exhibits high sensitivity and good stability, allowing a detection of the alkylphenols at an applied potential of -0.2V vs. Ag/AgCl, in linear range from 5.5 to 97.7 μM for 4-t-octylphenol and respectively, between 5.5 and 140 μM for 4-n-nonylphenol, with a response time of about 5s. The detection limit was 1.1 μM for 4-t-octylphenol, and respectively 0.4 μM for 4-n-nonylphenol (S/N=3).


Biosensors and Bioelectronics | 2013

Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels.

Lucian-Gabriel Zamfir; Lucian Rotariu; Camelia Bala

A highly sensitive acetylcholinesterase biosensor was developed for detection of carbamate drugs based on TTF-TCNQ-ionic liquid gel thiocholine sensor. The TTF-TCNQ-ionic/ionic liquid gel was characterized by FT-IR and scanning electron microscopy. The electrocatalytic behavior of TTF-TCNQ-ionic liquid gels toward oxidation of thiocholine was thoroughly investigated. 1-Ethyl-3-methylimidazolium tetracyanoborate gel based sensor allowed amperometric detection of thiocholine at +400 mV vs. Ag/AgCl with a high sensitivity of 55.9±1.2 μA mM(-1)cm(-2) and a low detection limit equal to 7.6 μM. The catalytic rate constant and diffusion constant of thiocholine were estimated from chronoamperometric data. The proposed biosensor based on AChE immobilized in sol-gel matrix was used for the detection of two carbamate therapeutic drugs. Very low detection limits of 26 pM eserine and 0.3 nM neostigmine were achieved. The analysis of spiked tap water proved the biosensor capability to be used as a screening method for detection of carbamate drugs in wastewaters.

Collaboration


Dive into the Camelia Bala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela Puiu

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hassan Y. Aboul-Enein

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge