Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron Ackerley is active.

Publication


Featured researches published by Cameron Ackerley.


Cell | 1991

Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance

Norbert Kartner; John W. Hanrahan; Tim Jensen; A. Leonard Naismith; Shizhang Sun; Cameron Ackerley; Evangelica Reyes; Lap-Chee Tsui; Johanna M. Rommens; Christine E. Bear; John R. Riordan

The nature of involvement of the cystic fibrosis gene product (CFTR) in epithelial anion transport is not yet understood. We have expressed CFTR in Sf9 insect cells using the baculovirus expression vector system. Reactivity with antibodies against 12 different epitopes spanning the entire sequence suggested that the complete polypeptide chain was synthesized. Immunogold labeling showed localization to both cell-surface and intracellular membranes. Concomitant with CFTR expression, these cells exhibited a new cAMP-stimulated anion permeability. This conductance, monitored both by radioiodide efflux and patch clamping, strongly resembled that present in several CFTR-expressing human epithelial cells. These findings demonstrate that CFTR can function in heterologous nonepithelial cells and lend support to the possibility that CFTR may itself be a regulated anion channel.


Nature Genetics | 2003

Mutations in NHLRC1 cause progressive myoclonus epilepsy

Elayne M. Chan; Edwin J. Young; Leonarda Ianzano; Iulia Munteanu; Xiaochu Zhao; Constantine C. Christopoulos; G. Avanzini; Maurizio Elia; Cameron Ackerley; Nebojša Jović; Saeed Bohlega; Eva Andermann; Guy A. Rouleau; Antonio V. Delgado-Escueta; Berge A. Minassian; Stephen W. Scherer

Lafora progressive myoclonus epilepsy is characterized by pathognomonic endoplasmic reticulum (ER)-associated polyglucosan accumulations. We previously discovered that mutations in EPM2A cause Lafora disease. Here, we identify a second gene associated with this disease, NHLRC1 (also called EPM2B), which encodes malin, a putative E3 ubiquitin ligase with a RING finger domain and six NHL motifs. Laforin and malin colocalize to the ER, suggesting they operate in a related pathway protecting against polyglucosan accumulation and epilepsy.


American Journal of Pathology | 2004

Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model

Peter R. Durie; Geraldine Kent; M. James Phillips; Cameron Ackerley

The lack of an appropriate animal model with multiorgan pathology characteristic of the human form of cystic fibrosis has hampered our understanding of the pathobiology of the disease. We evaluated multiple organs of congenic C57BL/6J cystic fibrosis transmembrane regulator (Cftr)(-/-) and Cftr(+/+) mice maintained from weaning on a liquid diet then sacrificed between 1 and 24 months of age. The lungs of the Cftr(-/-) animals showed patchy alveolar overdistention, interstitial thickening, and fibrosis, with progression up to 6 months of age. The proximal and distal airway surface was encased with mucus-like material but lacked overt evidence of chronic bacterial infections or inflammation. All Cftr(-/-) animals showed progressive liver disease, with hepatosteatosis, focal cholangitis, inspissated secretions, and bile duct proliferation; after 1 year of age there was progression to focal biliary cirrhosis. The intercalated, intralobular and interlobular ducts and acinar lumina of the exocrine pancreas, the parotid and submaxillary glands of the Cftr(-/-) animals were dilated and filled with inspissated material, as well as mild inflammation and acinar cell drop out. Quantitative measurements of the pancreas showed significant acinar atrophy and increased acinar volume in comparison with age-matched Cftr(+/+) littermates. The ileal lumen and crypts were filled with adherent fibrillar material. After 3 months of age the vas deferens of the Cftr(-/-) animals could not be identified. None of the aforementioned pathological changes were observed in the Cftr(+/+) littermates fed the same liquid diet. We show, for the first time, that long-lived C578L/6J Cftr(-/-) mice develop manifestations of cystic fibrosis-like disease in all pathologically affected organs in the human form of cystic fibrosis.


Biochemical Journal | 2004

The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA.

Fenghao Xu; Charles Morin; Grant A. Mitchell; Cameron Ackerley; Brian H. Robinson

Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354-->Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [(35)S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria.


Circulation Research | 2004

Defective lung vascular development and fatal respiratory distress in endothelial NO synthase-deficient mice: A model of alveolar capillary dysplasia?

R. N. N. Han; Saeid Babaei; Malcolm Robb; Tony Jer-Fu Lee; Ross Ridsdale; Cameron Ackerley; Martin Post; Duncan J. Stewart

Abstract— Endothelium-derived NO plays a critical role in the regulation of cardiovascular function and structure, as well as acting as a downstream mediator of the angiogenic response to numerous vascular growth factors. Although endothelial NO synthase (eNOS)–deficient mice are viable, minor congenital cardiac abnormalities have been reported and homozygous offspring exhibit high neonatal mortality out of proportion to the severity of these defects. The aim of the present report was to determine whether abnormalities of the pulmonary vascular development could contribute to high neonatal loss in eNOS-deficient animals. We now report that eNOS-deficient mice display major defects in lung morphogenesis, resulting in respiratory distress and death within the first hours of life in the majority of animals. Histological and molecular examination of preterm and newborn mutant lungs demonstrated marked thickening of saccular septae, with evidence of reduced surfactant material. Lungs of eNOS-deficient mice also exhibited a striking paucity of distal arteriolar branches and extensive regions of capillary hypoperfusion, together with misalignment of pulmonary veins, which represent the characteristic features of alveolar capillary dysplasia. We conclude that eNOS plays a previously unrecognized role in lung development, which may have relevance for clinical syndromes of neonatal respiratory distress.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mutation I810N in the α3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS

Steven J. Clapcote; Steven Duffy; Gang Xie; Greer S. Kirshenbaum; Allison R. Bechard; Vivien Rodacker Schack; Janne Petersen; Laleh Sinai; Bechara J. Saab; Jason P. Lerch; Berge A. Minassian; Cameron Ackerley; John G. Sled; Miguel A. Cortez; Jeffrey T. Henderson; Bente Vilsen; John C. Roder

In a mouse mutagenesis screen, we isolated a mutant, Myshkin (Myk), with autosomal dominant complex partial and secondarily generalized seizures, a greatly reduced threshold for hippocampal seizures in vitro, posttetanic hyperexcitability of the CA3-CA1 hippocampal pathway, and neuronal degeneration in the hippocampus. Positional cloning and functional analysis revealed that Myk/+ mice carry a mutation (I810N) which renders the normally expressed Na+,K+-ATPase α3 isoform inactive. Total Na+,K+-ATPase activity was reduced by 42% in Myk/+ brain. The epilepsy in Myk/+ mice and in vitro hyperexcitability could be prevented by delivery of additional copies of wild-type Na+,K+-ATPase α3 by transgenesis, which also rescued Na+,K+-ATPase activity. Our findings reveal the functional significance of the Na+,K+-ATPase α3 isoform in the control of epileptiform activity and seizure behavior.


Journal of Biological Chemistry | 2004

Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis.

María Fabiana De Rosa; Daniel Sillence; Cameron Ackerley; Clifford A. Lingwood

Transfection studies have implicated the multiple drug resistance pump, MDR1, as a glucosyl ceramide translocase within the Golgi complex (Lala, P., Ito, S., and Lingwood, C. A. (2000) J. Biol. Chem. 275, 6246–6251). We now show that MDR1 inhibitors, cyclosporin A or ketoconazole, inhibit neutral glycosphingolipid biosynthesis in 11 of 12 cell lines tested. The exception, HeLa cells, do not express MDR1. Microsomal lactosyl ceramide and globotriaosyl ceramide synthesis from endogenous or exogenously added liposomal glucosyl ceramide was inhibited by cyclosporin A, consistent with a direct role for MDR1/glucosyl ceramide translocase activity in their synthesis. In contrast, cellular ganglioside synthesis in the same cells, was unaffected by MDR1 inhibition, suggesting neutral and acid glycosphingolipids are synthesized from distinct precursor glycosphingolipid pools. Metabolic labeling in wild type and knock-out (MDR1a, 1b, MRP1) mouse fibroblasts showed the same loss of neutral glycosphingolipid (glucosyl ceramide, lactosyl ceramide) but not ganglioside (GM3) synthesis, confirming the proposed role for MDR1 translocase activity. Cryo-immunoelectron microscopy showed MDR1 was predominantly intracellular, largely in rab6-containing Golgi vesicles and Golgi cisternae, the site of glycosphingolipid synthesis. These studies identify MDR1 as the major glucosyl ceramide flippase required for neutral glycosphingolipid anabolism and demonstrate a previously unappreciated dichotomy between neutral and acid glycosphingolipid synthesis.


International Journal of Developmental Neuroscience | 1999

Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells.

James T. Rutka; Stacey Ivanchuk; Soma Mondal; Michael D. Taylor; Keiichi Sakai; Peter Dirks; Peter Jun; Shin Jung; Laurence E. Becker; Cameron Ackerley

Intermediate filaments (IFs) are highly diverse intracytoplasmic proteins within the cytoskeleton which exhibit cell type specificity of expression. A growing body of evidence suggests that IFs may be involved as collaborators in complex cellular processes controlling astrocytoma cell morphology, adhesion and proliferation. As the co‐expression of different IF subtypes has been linked to enhanced motility and invasion in a number of different cancer subtypes, we undertook the present study to examine the expression of vimentin and nestin in a panel of human astrocytoma cell lines whose tumorigenicity, invasiveness and cytoskeletal protein profiles are well known. Astrocytoma cells were examined for IF protein expression by immunofluorescence confocal and immunoelectron microscopy. The motility of all cell lines was determined by computerized time‐lapse videomicroscopy. Invasive potential of astrocytoma cells was determined using Matrigel as a barrier to astrocytoma cell invasion in vitro. Vimentin was expressed by all astrocytoma cell lines. On the other hand, nestin was variably expressed among the different cell lines. The most motile and invasive astrocytoma cell line in our study was antisense GFAP‐transfected U251 (asU251) astrocytoma cells which showed marked up‐regulation of nestin expression compared to the U251 parental cell line and controls. The U87 astrocytoma cell line also demonstrated high nestin expression levels and was associated with an increased basal motility rate and a high degree of invasiveness through Matrigel. U343 astrocytoma cells did not express nestin, but had high levels of GFAP. It had the lowest motility rate and invasiveness of all the astrocytoma cell lines examined. Taken together, these data suggest that for the astrocytoma cell lines examined in this study, nestin and vimentin co‐expression may serve as a marker for an astrocytoma cell type with enhanced motility and invasive potential. Further studies are required to determine the mechanism by which dual‐IF protein expression alters other cytoskeletal or cell surface receptor protein components important in the process of astrocytoma invasion.


American Journal of Pathology | 2000

Expression of p57KIP2 Potently Blocks the Growth of Human Astrocytomas and Induces Cell Senescence

Atsushi Tsugu; Keiichi Sakai; Peter Dirks; Shin Jung; Rosanna Weksberg; Yan-Ling Fei; Soma Mondal; Stacey Ivanchuk; Cameron Ackerley; Paul A. Hamel; James T. Rutka

Astrocytic tumors frequently exhibit defects in the expression or activity of proteins that control cell-cycle progression. Inhibition of kinase activity associated with cyclin/cyclin-dependent kinase co-complexes by cyclin-dependent kinase inhibitors is an important mechanism by which the effects of growth signals are down-regulated. We undertook the present study to determine the role of p57(KIP2) (p57) in human astrocytomas. We demonstrate here that whereas p57 is expressed in fetal brain tissue, specimens of astrocytomas of varying grade and permanent astrocytoma cell lines do not express p57, and do not contain mutations of the p57 gene by multiplex-heteroduplex analysis. However, the inducible expression of p57 in three well-characterized human astrocytoma cell lines (U343 MG-A, U87 MG, and U373 MG) using the tetracycline repressor system leads to a potent proliferative block in G(1) as determined by growth curve and flow cytometric analyses. After the induction of p57, retinoblastoma protein, p107, and E2F-1 levels diminish, and retinoblastoma protein is shifted to a hypophosphorylated form. Morphologically, p57-induced astrocytoma cells became large and flat with an expanded cytoplasm. The inducible expression of p57 leads to the accumulation of senescence-associated beta-galactosidase marker within all astrocytoma cell lines such that approximately 75% of cells were positive at 1 week after induction. Induction of p57 in U373 astrocytoma cells generated a small population of cells ( approximately 15%) that were nonviable, contained discrete nuclear fragments on Hoechst 33258 staining, and demonstrated ultrastructural features characteristic of apoptosis. Examination of bax and poly-(ADP ribose) polymerase levels showed no change in bax, but decreased expression of poly-(ADP ribose) polymerase after p57 induction in all astrocytoma cell lines. These data demonstrate that the proliferative block imposed by p57 on human astrocytoma cells results in changes in the expression of a number of cell cycle regulatory factors, cell morphology, and a strong stimulus to cell senescence.


Annals of Neurology | 2010

Glycogen hyperphosphorylation underlies lafora body formation

Julie Turnbull; Peixiang Wang; Jean Marie Girard; Alessandra Ruggieri; Tony Wang; Arman Draginov; Alexander P. Kameka; Nela Pencea; Xiaochu Zhao; Cameron Ackerley; Berge A. Minassian

Glycogen, the largest cytosolic macromolecule, acquires solubility, essential to its function, through extreme branching. Lafora bodies are aggregates of polyglucosan, a long, linear, poorly branched, and insoluble form of glycogen. Lafora bodies occupy vast numbers of neuronal dendrites and perikarya in Lafora disease in time‐dependent fashion, leading to intractable and fatal progressive myoclonus epilepsy. Lafora disease is caused by deficiency of either the laforin glycogen phosphatase or the malin E3 ubiquitin ligase. The 2 leading hypotheses of Lafora body formation are: (1) increased glycogen synthase activity extends glycogen strands too rapidly to allow adequate branching, resulting in polyglucosans; and (2) increased glycogen phosphate leads to glycogen conformational change, unfolding, precipitation, and conversion to polyglucosan. Recently, it was shown that in the laforin phosphatase‐deficient form of Lafora disease, there is no increase in glycogen synthase, but there is a dramatic increase in glycogen phosphate, with subsequent conversion of glycogen to polyglucosan. Here, we determine whether Lafora bodies in the malin ubiquitin ligase‐deficient form of the disease are due to increased glycogen synthase or increased glycogen phosphate.

Collaboration


Dive into the Cameron Ackerley's collaboration.

Top Co-Authors

Avatar

Berge A. Minassian

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge