Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron Johnson is active.

Publication


Featured researches published by Cameron Johnson.


Development | 2005

Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis

Gabriela Carolina Pagnussat; Hee-Ju Yu; Quy A. Ngo; Sarojam Rajani; Sevugan Mayalagu; Cameron Johnson; Arnaud Capron; Li-Fen Xie; De Ye; Venkatesan Sundaresan

The plant life cycle involves an alternation of generations between sporophyte and gametophyte. Currently, the genes and pathways involved in gametophytic development and function in flowering plants remain largely unknown. A large-scale mutant screen of Ds transposon insertion lines was employed to identify 130 mutants of Arabidopsis thaliana with defects in female gametophyte development and function. A wide variety of mutant phenotypes were observed, ranging from defects in different stages of early embryo sac development to mutants with apparently normal embryo sacs, but exhibiting defects in processes such as pollen tube guidance, fertilization or early embryo development. Unexpectedly, nearly half of the mutants isolated in this study were found to be primarily defective in post-fertilization processes dependent on the maternal allele, suggesting that genes expressed from the female gametophyte or the maternal genome play a major role in the early development of plant embryos. Sequence identification of the genes disrupted in the mutants revealed genes involved in protein degradation, cell death, signal transduction and transcriptional regulation required for embryo sac development, fertilization and early embryogenesis. These results provide a first comprehensive overview of the genes and gene products involved in female gametophyte development and function within a flowering plant.


Genome Research | 2009

Clusters and superclusters of phased small RNAs in the developing inflorescence of rice

Cameron Johnson; Anna Kasprzewska; Kristin Tennessen; John Fernandes; Guo-Ling Nan; Virginia Walbot; Venkatesan Sundaresan; Vicki Vance; Lewis H. Bowman

To address the role of small regulatory RNAs in rice development, we generated a large data set of small RNAs from mature leaves and developing roots, shoots, and inflorescences. Using a spatial clustering algorithm, we identified 36,780 genomic groups of small RNAs. Most consisted of 24-nt RNAs that are expressed in all four tissues and enriched in repeat regions of the genome; 1029 clusters were composed primarily of 21-nt small RNAs and, strikingly, 831 of these contained phased RNAs and were preferentially expressed in developing inflorescences. Thirty-eight of the 24-mer clusters were also phased and preferentially expressed in inflorescences. The phased 21-mer clusters derive from nonprotein coding, nonrepeat regions of the genome and are grouped together into superclusters containing 10-46 clusters. The majority of these 21-mer clusters (705/831) are flanked by a degenerate 22-nt motif that is offset by 12 nt from the main phase of the cluster. Small RNAs complementary to these flanking 22-nt motifs define a new miRNA family, which is conserved in maize and expressed in developing reproductive tissues in both plants. These results suggest that the biogenesis of phased inflorescence RNAs resembles that of tasiRNAs and raise the possibility that these novel small RNAs function in early reproductive development in rice and other monocots.


Nucleic Acids Research | 2007

CSRDB: a small RNA integrated database and browser resource for cereals.

Cameron Johnson; Lewis H. Bowman; Alex T. Adai; Vicki Vance; Venkatesan Sundaresan

Plant small RNAs (smRNAs), which include microRNAs (miRNAs), short interfering RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs), are emerging as significant components of epigenetic processes and of gene networks involved in development and in homeostasis. Here we present a bioinformatics resource for cereal crops, the Cereal Small RNA Database (CSRDB), consisting of large-scale datasets of maize and rice smRNA sequences generated by high-throughput pyrosequencing. The smRNA sequences have been mapped to the rice genome and to the available maize genome sequence and these results are presented in two genome browser datasets using the Generic Genome Browser. Potential RNA targets for the smRNAs have been predicted and access to the resulting smRNA/RNA target pair dataset has been made available through a MySQL based relational database. Various ways to access the data are provided including links from the genome browser to the target database. Data linking and integration are the main focus for this interface, and internal as well as external links are present. The resource is available at and will be updated as more sequences become available.


BMC Plant Biology | 2014

Natural rice rhizospheric microbes suppress rice blast infections

Carla Spence; Emily Alff; Cameron Johnson; Cassandra Ramos; Nicole M. Donofrio; Venkatesan Sundaresan; Harsh P. Bais

BackgroundThe natural interactions between plant roots and their rhizospheric microbiome are vital to plant fitness, modulating both growth promotion and disease suppression. In rice (Oryza sativa), a globally important food crop, as much as 30% of yields are lost due to blast disease caused by fungal pathogen Magnaporthe oryzae. Capitalizing on the abilities of naturally occurring rice soil bacteria to reduce M. oryzae infections could provide a sustainable solution to reduce the amount of crops lost to blast disease.ResultsNaturally occurring root-associated rhizospheric bacteria were isolated from California field grown rice plants (M-104), eleven of which were taxonomically identified by16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Bacterial isolates were tested for biocontrol activity against the devastating foliar rice fungal pathogen, M. oryzae pathovar 70–15. In vitro, a Pseudomonas isolate, EA105, displayed antibiosis through reducing appressoria formation by nearly 90% as well as directly inhibiting fungal growth by 76%. Although hydrogen cyanide (HCN) is a volatile commonly produced by biocontrol pseudomonads, the activity of EA105 seems to be independent of its HCN production. During in planta experiments, EA105 reduced the number of blast lesions formed by 33% and Pantoea agglomerans isolate, EA106 by 46%. Our data also show both EA105 and EA106 trigger jasmonic acid (JA) and ethylene (ET) dependent induced systemic resistance (ISR) response in rice.ConclusionsOut of 11 bacteria isolated from rice soil, pseudomonad EA105 most effectively inhibited the growth and appressoria formation of M. oryzae through a mechanism that is independent of cyanide production. In addition to direct antagonism, EA105 also appears to trigger ISR in rice plants through a mechanism that is dependent on JA and ET signaling, ultimately resulting in fewer blast lesions. The application of native bacteria as biocontrol agents in combination with current disease protection strategies could aid in global food security.


Plant Journal | 2013

Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: Evidence for distinct sex-dependent chromatin and epigenetic states before fertilization

Sarah N. Anderson; Cameron Johnson; Daniel S. Jones; Liza J. Conrad; Xiaoping Gou; Scott D. Russell; Venkatesan Sundaresan

The formation of a zygote by the fusion of egg and sperm involves the two gametic transcriptomes. In flowering plants, the embryo sac embedded within the ovule contains the egg cell, whereas the pollen grain contains two sperm cells inside a supporting vegetative cell. The difficulties of collecting isolated gametes and consequent low recovery of RNA have restricted in-depth analysis of gametic transcriptomes in flowering plants. We isolated living egg cells, sperm cells and pollen vegetative cells from Oryza sativa (rice), and identified transcripts for approximately 36 000 genes by deep sequencing. The three transcriptomes are highly divergent, with about three-quarters of those genes differentially expressed in the different cell types. Distinctive expression profiles were observed for genes involved in chromatin conformation, including an unexpected expression in the sperm cell of genes associated with active chromatin. Furthermore, both the sperm cell and the pollen vegetative cell were deficient in expression of key RNAi components. Differences in gene expression were also observed for genes for hormonal signaling and cell cycle regulation. The egg cell and sperm cell transcriptomes reveal major differences in gene expression to be resolved in the zygote, including pathways affecting chromatin configuration, hormones and cell cycle. The sex-specific differences in the expression of RNAi components suggest that epigenetic silencing in the zygote might act predominantly through female-dependent pathways. More generally, this study provides a detailed gene expression landscape for flowering plant gametes, enabling the identification of specific gametic functions, and their contributions to zygote and seed development.


Sexual Plant Reproduction | 2013

Pollen tube entry into the synergid cell of Arabidopsis is observed at a site distinct from the filiform apparatus

Yehoram Leshem; Cameron Johnson; Venkatesan Sundaresan

In higher plants, the double-fertilization process begins with the successful delivery of two sperm cells to the female gametophyte. The sperms cells are carried by a pollen tube that upon arrival at the micropylar end of the female gametophyte, bursts, and discharges its content into one of two specialized cells called the synergid cells. At their micropylar ends, both synergid cells form a thickened cell wall with a unique structure called the filiform apparatus. The filiform apparatus is believed to play a major role in pollen tube guidance and reception. It has also been assumed that the pollen tube enters the receptive synergid cell through the filiform apparatus. Here, we show that in Arabidopsis ovules, the arriving pollen tube appears to grow beyond the filiform apparatus to enter the synergid cell at a more distant site, where the tube bursts to release its contents. Thus, fertilization in Arabidopsis might involve two spatially and temporally separable stages, recognition and entry, with the latter apparently not requiring the filiform apparatus.


Plant Journal | 2014

The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice

Liza J. Conrad; Imtiyaz Khanday; Cameron Johnson; Emmanuel Guiderdoni; Gynheung An; Usha Vijayraghavan; Venkatesan Sundaresan

Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.


The Plant Cell | 2012

Molecular Characterization of the glauce Mutant: A Central Cell–Specific Function Is Required for Double Fertilization in Arabidopsis

Yehoram Leshem; Cameron Johnson; Samuel E. Wuest; Xiaoya Song; Quy A. Ngo; Ueli Grossniklaus; Venkatesan Sundaresan

In flowering plants, two female gametes, the egg and the central cell, interact with two sperm cells during double fertilization to give rise to an embryo and the endosperm. This work shows that the two events are uncoupled in the glauce mutant where no endosperm evolves and that the central cell is actively involved in sperm reception, by expressing a member of the BAHD superfamily. Double fertilization of the egg cell and the central cell by two sperm cells, resulting in the formation of the embryo and the endosperm, respectively, is a defining characteristic of flowering plants. The Arabidopsis thaliana female gametophytic mutant glauce (glc) can exhibit embryo development without any endosperm. Here, we show that in glc mutant embryo sacs one sperm cell successfully fuses with the egg cell but the second sperm cell fails to fuse with the central cell, resulting in single fertilization. Complementation studies using genes from the glc deletion interval identified an unusual genomic locus having homology to BAHD (for BEAT, AHCT, HCBT, and DAT) acyl-transferases with dual transcription units and alternative splicing that could rescue the sterility defect of glc. Expression of these transcripts appears restricted to the central cell, and expression within the central cell is sufficient to restore fertility. We conclude that the central cell actively promotes its own fertilization by the sperm cell through a signaling mechanism involving products of At1g65450. Successful fertilization of the egg cell is not blocked in the glc mutant, suggesting that evolution of double fertilization in flowering plants involved acquisition of specific functions by the central cell to enable its role as a second female gamete.


Developmental Cell | 2016

The CKI1 Histidine Kinase Specifies the Female Gametic Precursor of the Endosperm.

Li Yuan; Zhenning Liu; Xiaoya Song; Cameron Johnson; Xiaolin Yu; Venkatesan Sundaresan

Since the discovery of double fertilization, it has been recognized that flowering plants produce two highly dimorphic female gametes, the egg cell and central cell. These give rise, respectively, to the embryo and the endosperm, a nourishing tissue unique to flowering plants. Here we show that in Arabidopsis, endosperm formation requires the CYTOKININ INDEPENDENT 1 (CKI1) histidine kinase, an activator of the cytokinin signaling pathway, which specifies central cells and restricts egg cell fate. Dimorphism of the two adjacent gametes is mechanistically established in the syncytial embryo sac by spatially restricted CKI1 expression, followed by translocation of ER-localized CKI1 protein via nuclear migration. Cell specification by CKI1 likely involves activation of the cytokinin signaling pathway mediated by histidine phosphotransferases. Ectopic CKI1 expression generates non-propagating seeds with dual fertilized endosperms and no embryos. We conclude that CKI1-directed specification of the endosperm precursor central cell results in seeds containing an embryo and an endosperm.


Developmental Cell | 2017

The Zygotic Transition Is Initiated in Unicellular Plant Zygotes with Asymmetric Activation of Parental Genomes

Sarah N. Anderson; Cameron Johnson; Joshua Chesnut; Daniel S. Jones; Imtiyaz Khanday; Margaret Woodhouse; Chenxin Li; Liza J. Conrad; Scott D. Russell; Venkatesan Sundaresan

The zygotic transition, from a fertilized egg to an embryo, is central to animal and plant reproduction. Animal embryos depend upon maternally provided factors until zygotic genome activation (ZGA). In plants, the timing and parental genome contributions to ZGA are unresolved. Here, we use the flowering plant Oryza sativa (rice) to characterize transcriptomes of time-staged isogenic and hybrid zygotes following fertilization. Large-scale transcriptomic changes were observed in unicellular zygotes, including upregulation of S-phase genes, a characteristic of ZGA. The parental contributions to ZGA were highly asymmetric. Zygotic transcription was primarily from the maternal genome and included genes for basic cellular processes. Transcription of the paternal genome was highly restricted but unexpectedly included genes encoding putative pluripotency factors expressed at the onset of ZGA. Thus, distinct transcriptional activities are exhibited by the parental genomes during the initiation of embryogenesis, which presumptively derive from divergent pre-zygotic transcriptional states established in the gametes.

Collaboration


Dive into the Cameron Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liza J. Conrad

University of California

View shared research outputs
Top Co-Authors

Avatar

Lewis H. Bowman

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoya Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Chenxin Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicki Vance

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yehoram Leshem

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge