Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron L. Bentley is active.

Publication


Featured researches published by Cameron L. Bentley.


Analytical Chemistry | 2014

Applications of Convolution Voltammetry in Electroanalytical Chemistry

Cameron L. Bentley; Alan M. Bond; Anthony F. Hollenkamp; Peter J. Mahon; Jie Zhang

The robustness of convolution voltammetry for determining accurate values of the diffusivity (D), bulk concentration (C(b)), and stoichiometric number of electrons (n) has been demonstrated by applying the technique to a series of electrode reactions in molecular solvents and room temperature ionic liquids (RTILs). In acetonitrile, the relatively minor contribution of nonfaradaic current facilitates analysis with macrodisk electrodes, thus moderate scan rates can be used without the need to perform background subtraction to quantify the diffusivity of iodide [D = 1.75 (±0.02) × 10(-5) cm(2) s(-1)] in this solvent. In the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, background subtraction is necessary at a macrodisk electrode but can be avoided at a microdisk electrode, thereby simplifying the analytical procedure and allowing the diffusivity of iodide [D = 2.70 (±0.03) × 10(-7) cm(2) s(-1)] to be quantified. Use of a convolutive procedure which simultaneously allows D and nC(b) values to be determined is also demonstrated. Three conditions under which a technique of this kind may be applied are explored and are related to electroactive species which display slow dissolution kinetics, undergo a single multielectron transfer step, or contain multiple noninteracting redox centers using ferrocene in an RTIL, 1,4-dinitro-2,3,5,6-tetramethylbenzene, and an alkynylruthenium trimer, respectively, as examples. The results highlight the advantages of convolution voltammetry over steady-state techniques such as rotating disk electrode voltammetry and microdisk electrode voltammetry, as it is not restricted by the mode of diffusion (planar or radial), hence removing limitations on solvent viscosity, electrode geometry, and voltammetric scan rate.


Analytical Chemistry | 2013

Advantages available in the application of the semi-integral electroanalysis technique for the determination of diffusion coefficients in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate.

Cameron L. Bentley; Alan M. Bond; Anthony F. Hollenkamp; Peter J. Mahon; Jie Zhang

While it is common to determine diffusion coefficients from steady-state voltammetric limiting current values, derived from microelectrode/rotating disk electrode measurements or transient peak currents at macroelectrodes, application of these methods is problematic in highly viscous ionic liquids. This study shows that the semi-integral electroanalysis technique is highly advantageous under these circumstances, and it has allowed the diffusion coefficient of cobaltocenium, [Co(Cp)(2)](+) (simple redox process), and iodide, I(-) (complex redox mechanism), to be determined in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate (viscosity = 866 cP at 20 °C) from transient voltammograms obtained using a 1.6 mm diameter Pt electrode. In such a viscous medium, a near-steady-state current is not attainable with a 10 μm diameter microdisk electrode or a 3 mm diameter Pt rotating disk electrode, while peak currents at a macrodisk are subject to ohmic drop problems and the analysis is hampered by difficulties in modeling the processes involved in the oxidation of iodide. The diffusion coefficients of [Co(Cp)(2)](+) and I(-) were determined to be 9.4 (±0.3) × 10(-9) cm(2) s(-1) and 7.3 (±0.3) × 10(-9) cm(2) s(-1), respectively. These results highlight the utility of the semi-integral electroanalysis technique for quantifying the diffusivity of electroactive species in high viscosity media, where the use of steady-state techniques and transient peak currents is often limited.


Chemsuschem | 2016

Electrochemical Reduction of CO2 at Metal Electrodes in a Distillable Ionic Liquid.

Lu Chen; SiXuan Guo; Fengwang Li; Cameron L. Bentley; Mike Horne; Alan M. Bond; Jie Zhang

The electroreduction of CO2 in the distillable ionic liquid dimethylammonium dimethylcarbamate (dimcarb) has been investigated with 17 metal electrodes. Analysis of the electrolysis products reveals that aluminum, bismuth, lead, copper, nickel, palladium, platinum, iron, molybdenum, titanium and zirconium electroreduce the available protons in dimcarb to hydrogen rather than reducing CO2 . Conversely, indium, tin, zinc, silver and gold are able to catalyze the reduction of CO2 to predominantly carbon monoxide (CO) and to a lesser extent, formate ([HCOO](-) ). In all cases, the applied potential was found to have a minimal influence on the distribution of the reduction products. Overall, indium was found to be the best electrocatalyst for CO2 reduction in dimcarb, with faradaic efficiencies of approximately 45 % and 40 % for the generation of CO and [HCOO](-) , respectively, at a potential of -1.34 V versus Cc(+/0) (Cc(+) =cobaltocenium) employing a dimethylamine to CO2 ratio of less than 1.8:1.


Journal of the American Chemical Society | 2017

Nanoscale Structure Dynamics within Electrocatalytic Materials

Cameron L. Bentley; Minkyung Kang; Patrick R. Unwin

Electrochemical interfaces used for sensing, (electro)catalysis, and energy storage are usually nanostructured to expose particular surface sites, but probing the intrinsic activity of these sites is often beyond current experimental capability. Herein, it is demonstrated how a simple meniscus imaging probe of just 30 nm in size can be deployed for direct electrochemical and topographical imaging of electrocatalytic materials at the nanoscale. Spatially resolved topographical and electrochemical data are collected synchronously to create topographical images in which step-height features as small as 2 nm are easily resolved and potential-resolved electrochemical activity movies composed of hundreds of images are obtained in a matter of minutes. The technique has been benchmarked by investigating the hydrogen evolution reaction on molybdenum disulfide, where it is shown that the basal plane possesses uniform activity, while surface defects (i.e., few to multilayer step edges) give rise to a morphology-dependent (i.e., height-dependent) enhancement in catalytic activity. The technique was then used to investigate the electro-oxidation of hydrazine at the surface of electrodeposited Au nanoparticles (AuNPs) supported on glassy carbon, where subnanoentity (i.e., sub-AuNP) reactivity mapping has been demonstrated. We show, for the first time, that electrochemical reaction rates vary significantly across an individual AuNP surface and that these single entities cannot be considered as uniformly active. The work herein provides a road map for future studies in electrochemical science, in which the activity of nanostructured materials can be viewed as quantitative movies, readily obtained, to reveal active sites directly and unambiguously.


Analytical Chemistry | 2013

Unexpected complexity in the electro-oxidation of iodide on gold in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.

Cameron L. Bentley; Alan M. Bond; Anthony F. Hollenkamp; Peter J. Mahon; Jie Zhang

The electro-oxidation of iodide on a gold electrode in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been investigated using transient cyclic voltammetry, linear-sweep semi-integral voltammetry, an electrochemical quartz crystal microbalance technique, and coulometry/electrogravimetry. Two oxidation processes are observed, with an electron stoichiometry of 1:1, compared with the well-known 2:1 electron stoichiometry observed on other commonly used electrode materials, such as platinum, glassy carbon, and boron-doped diamond, under identical conditions. Detailed mechanistic information, obtained in situ using an electrochemical quartz crystal microbalance, reveals that this unusual observation can be attributed to the dissolution of the gold electrode in the presence of iodide. Coulometric/electrogravimetric analysis suggests that the oxidation state of the soluble gold species is +1 and that diiodoaurate, [AuI2](-), is the likely intermediate. A proportionally smaller amount of triiodide intermediate is also detected by means of UV-vis spectroscopy. On this basis, it is proposed that iodide oxidation on gold occurs via two parallel pathways: predominantly via a diiodoaurate intermediate 2I(-) + Au ⇌ [AuI2](-) + e(-) and [AuI2](-) ⇌ I2 + Au + e(-) and to a lesser extent via a triiodide intermediate 3I(-) ⇌ I3(-) + 2e(-) and I3(-) ⇌ 3/2I2 + e(-). This proposed mechanism was further supported by voltammetric investigations with an authentic sample of the anionic [AuI2](-) complex.


Analytical Chemistry | 2016

Dual-Frequency Alternating Current Designer Waveform for Reliable Voltammetric Determination of Electrode Kinetics Approaching the Reversible Limit

Jiezhen Li; Cameron L. Bentley; Alan M. Bond; Jie Zhang

Alternating current (ac) voltammetry provides access to faster electrode kinetics than direct current (dc) methods. However, difficulties in ac and other methods arise when the heterogeneous electron-transfer rate constant (k(0)) approaches the reversible limit, because the voltammetric characteristics become insensitive to electrode kinetics. Thus, in this near-reversible regime, even small uncertainties associated with bulk concentration (C), diffusion coefficient (D), electrode area (A), and uncompensated resistance (Ru) can lead to significant systematic error in the determination of k(0). In this study, we have introduced a kinetically sensitive dual-frequency designer waveform into the Fourier-transformed large-amplitude alternating current (FTAC) voltammetric method that is made up of two sine waves having the same amplitude but with different frequencies (e.g., 37 and 615 Hz) superimposed onto a dc ramp to quantify the close-to-reversible Fc(0/+) process (Fc = ferrocene) in two nonhaloaluminate ionic liquids. The concept is that from a single experiment the lower-frequency data set, collected on a time scale where the target process is reversible, can be used as an internal reference to calibrate A, D, C, and Ru. These calibrated values are then used to calculate k(0) from analysis of the harmonics of the higher-frequency data set, where the target process is quasi-reversible. With this approach, k(0) values of 0.28 and 0.11 cm·s(-1) have been obtained at a 50 μm diameter platinum microdisk electrode for the close-to-diffusion-controlled Fc(0/+) process in two ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, respectively.


ACS Nano | 2017

Simultaneous Topography and Reaction Flux Mapping At and Around Electrocatalytic Nanoparticles

Minkyung Kang; David Perry; Cameron L. Bentley; Geoffrey D. West; Ashley M. Page; Patrick R. Unwin

The characterization of electrocatalytic reactions at individual nanoparticles (NPs) is presently of considerable interest but very challenging. Herein, we demonstrate how simple-to-fabricate nanopipette probes with diameters of approximately 30 nm can be deployed in a scanning ion conductance microscopy (SICM) platform to simultaneously visualize electrochemical reactivity and topography with high spatial resolution at electrochemical interfaces. By employing a self-referencing hopping mode protocol, whereby the probe is brought from bulk solution to the near-surface at each pixel, and with potential-time control applied at the substrate, current measurements at the nanopipette can be made with high precision and resolution (30 nm resolution, 2600 pixels μm-2, <0.3 s pixel-1) to reveal a wealth of information on the substrate physicochemical properties. This methodology has been applied to image the electrocatalytic oxidation of borohydride at ensembles of AuNPs on a carbon fiber support in alkaline media, whereby the depletion of hydroxide ions and release of water during the reaction results in a detectable change in the ionic composition around the NPs. Through the use of finite element method simulations, these observations are validated and analyzed to reveal important information on heterogeneities in ion flux between the top of a NP and the gap at the NP-support contact, diffusional overlap and competition for reactant between neighboring NPs, and differences in NP activity. These studies highlight key issues that influence the behavior of NP assemblies at the single NP level and provide a platform for the use of SICM as an important tool for electrocatalysis studies.


Analytical Chemistry | 2016

Electrochemistry of Iodide, Iodine, and Iodine Monochloride in Chloride Containing Nonhaloaluminate Ionic Liquids

Cameron L. Bentley; Alan M. Bond; Anthony F. Hollenkamp; Peter J. Mahon; Jie Zhang

The electrochemical behavior of iodine remains a contemporary research interest due to the integral role of the I(-)/I3(-) couple in dye-sensitized solar cell technology. The neutral (I2) and positive (I(+)) oxidation states of iodine are known to be strongly electrophilic, and thus the I(-)/I2/I(+) redox processes are sensitive to the presence of nucleophilic chloride or bromide, which are both commonly present as impurities in nonhaloaluminate room temperature ionic liquids (ILs). In this study, the electrochemistry of I(-), I2, and ICl has been investigated by cyclic voltammetry at a platinum macrodisk electrode in a binary IL mixture composed of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]). In the absence of chloride (e.g., in neat [C2mim][NTf2]), I(-) is oxidized in an overall one electron per iodide ion process to I2 via an I3(-) intermediate, giving rise to two resolved I(-)/I3(-) and I3(-)/I2 processes, as per previous reports. In the presence of low concentrations of chloride ([Cl(-)] and [I(-)] are both <30 mM), an additional oxidation process appears at potentials less positive than the I3(-)/I2 process, which corresponds to the oxidation of I3(-) to the interhalide complex anion [ICl2](-), in an overall two electron per iodide ion process. In the presence of a large excess of Cl(-) ([I(-)] ≈ 10 mM and [Cl(-)] ≈ 3.7 M), I(-) is oxidized in an overall two electron per iodide ion process to [ICl2](-) via an [I2Cl](-) intermediate (confirmed by investigating the voltammetric response of ICl and I2 under these conditions). In summary, the I(-)/I2/I(+) processes in nonhaloaluminate ILs involve a complicated interplay between multiple electron transfer pathways and homogeneous chemical reactions which may not be at equilibrium on the voltammetric time scale.


Chemsuschem | 2017

Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium

Lu Chen; Fengwang Li; Ying Zhang; Cameron L. Bentley; Mike Horne; Alan M. Bond; Jie Zhang

The electrocatalytic reduction of CO2 in a 30 % (w/w) monoethanolamine (MEA) aqueous solution was undertaken at In, Sn, Bi, Pb, Pd, Ag, Cu and Zn metal electrodes. Upon the dissolution of CO2 , the non-conducting MEA solution is transformed into a conducting one, as is required for the electrochemical reduction of CO2 . Both an increase in the electrode surface porosity and the addition of the surfactant cetyltrimethylammonium bromide (CTAB) suppress the competing hydrogen evolution reaction; the latter has a significantly stronger impact. The combination of a porous metal electrode and the addition of 0.1 % (w/w) CTAB results in the reduction of molecular CO2 to CO and formate ions, and the product distribution is highly dependent on the identity of the metal electrode used. At a potential of -0.8 V versus the reversible hydrogen electrode (RHE) with an indium electrode with a coralline-like structure, the faradaic efficiencies for the generation of CO and [HCOO]- ions are 22.8 and 54.5 %, respectively compared to efficiencies of 2.9 and 60.8 % with a porous lead electrode and 38.2 and 2.4 % with a porous silver electrode. Extensive data for the other five electrodes are also provided. The optimal conditions for CO2 reduction are identified, and mechanistic details for the reaction pathways are proposed in this proof-of-concept electrochemical study in a CO2 capture medium. The conditions and features needed to achieve industrially and commercially viable CO2 reduction in an amine-based capture medium are considered.


Analytical Chemistry | 2018

Stability and Placement of Ag/AgCl Quasi-Reference Counter Electrodes in Confined Electrochemical Cells

Cameron L. Bentley; David Perry; Patrick R. Unwin

Nanoelectrochemistry is an important and growing branch of electrochemistry that encompasses a number of key research areas, including (electro)catalysis, energy storage, biomedical/environmental sensing, and electrochemical imaging. Nanoscale electrochemical measurements are often performed in confined environments over prolonged experimental time scales with nonisolated quasi-reference counter electrodes (QRCEs) in a simplified two-electrode format. Herein, we consider the stability of commonly used Ag/AgCl QRCEs, comprising an AgCl-coated wire, in a nanopipet configuration, which simulates the confined electrochemical cell arrangement commonly encountered in nanoelectrochemical systems. Ag/AgCl QRCEs possess a very stable reference potential even when used immediately after preparation and, when deployed in Cl- free electrolyte media (e.g., 0.1 M HClO4) in the scanning ion conductance microscopy (SICM) format, drift by only ca. 1 mV h-1 on the several hours time scale. Furthermore, contrary to some previous reports, when employed in a scanning electrochemical cell microscopy (SECCM) format (meniscus contact with a working electrode surface), Ag/AgCl QRCEs do not cause fouling of the surface (i.e., with soluble redox byproducts, such as Ag+) on at least the 6 h time scale, as long as suitable precautions with respect to electrode handling and placement within the nanopipet are observed. These experimental observations are validated through finite element method (FEM) simulations, which consider Ag+ transport within a nanopipet probe in the SECCM and SICM configurations. These results confirm that Ag/AgCl is a stable and robust QRCE in confined electrochemical environments, such as in nanopipets used in SICM, for nanopore measurements, for printing and patterning, and in SECCM, justifying the widespread use of this electrode in the field of nanoelectrochemistry and beyond.

Collaboration


Dive into the Cameron L. Bentley's collaboration.

Top Co-Authors

Avatar

Jie Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony F. Hollenkamp

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter J. Mahon

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Crooks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Yi-Tao Long

East China University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge