Cameron Musgrove
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cameron Musgrove.
Optics Express | 2008
Guan Xu; Daqing Piao; Cameron Musgrove; Charles F. Bunting; Hamid Dehghani
We investigate the feasibility of trans-rectal optical tomography of the prostate using an endo-rectal near-infrared (NIR) applicator that is to be integrated with a trans-rectal ultrasound (TRUS) probe. Integration with TRUS ensures accurate endo-rectal positioning of the NIR applicator and the utility of using TRUS spatial prior information to guide NIR image reconstruction. The prostate NIR image reconstruction is challenging even with the use of spatial prior owing to the anatomic complexity of the imaging domain. A hierarchical reconstruction algorithm is developed that implements cascaded initial-guesses for nested domains. This hierarchical image reconstruction method is then applied to evaluating a number of NIR applicator designs for integration with a sagittal TRUS transducer. A NIR applicator configuration feasible for instrumentation development is proposed that contains one linear array of optodes on each lateral side of the sagittal TRUS transducer. The performance of this NIR applicator is characterized for the recovery of single tumor mimicking lesion as well as dual targets in the prostate. The results suggest a strong feasibility of transrectal prostate imaging by use of the endo-rectal NIR/US probe.
Proceedings of SPIE | 2007
Daqing Piao; Hao Xie; Cameron Musgrove; Charles F. Bunting; Guolong Zhang; Ellen B. Domnick-Davidsion; Kenneth E. Bartels; G. Reed Holyoak; Sreenivas N. Vemulapalli; Hamid Dehghani; Brian W. Pogue
Near-infrared optical tomography is an interesting technique of imaging with high blood-based contrast. Unfortunately non-invasive NIR tomographic imaging has been restricted to specific organs like breast that can be transilluminated externally. In this paper, we demonstrate that near-infrared (NIR) optical tomography can be employed at the endoscope-scale, and implemented at a rapid sampling speed that allows translation to in vivo use. A spread-spectral-encoding technique based on a broadband light source is combined with light delivery by linear-to-circular fiber bundle, to provide endoscopic probing of multiple source/detector fibers for tomographic imaging as well as parallel sampling of all source-detector pairs for rapid data acquisition. Endoscopic NIR tomography is demonstrated by use of a 12mm diameter probe housing 8 sources and 8 detectors at 8 Hz frame rate. Transrectal NIR optical tomography by use of tissue specimen is also presented. This novel approach provides the key feasibility studies to allow this blood-based contrast imaging technology to be tried in cancer detection of internal organs via endoscopic interrogation.
Proceedings of SPIE | 2015
Cameron Musgrove; James C. West
Interference and interference mitigation techniques degrade synthetic aperture radar (SAR) coherent data products. Radars utilizing stretch processing present a unique challenge for many mitigation techniques because the interference signal itself is modified through stretch processing from its original signal characteristics. Many sources of interference, including constant tones, are only present within the fast-time sample data for a limited number of samples, depending on the radar and interference bandwidth. Adaptive filtering algorithms to estimate and remove the interference signal that rely upon assuming stationary interference signal characteristics can be ineffective. An effective mitigation method, called notching, forces the value of the data samples containing interference to zero. However, as the number of data samples set to zero increases, image distortion and loss of resolution degrade both the image product and any second order image products. Techniques to repair image distortions,1 are effective for point-like targets. However, these techniques are not designed to model and repair distortions in SAR image terrain. Good terrain coherence is important for SAR second order image products because terrain occupies the majority of many scenes. For the case of coherent change detection it is the terrain coherence itself that determines the quality of the change detection image. This paper proposes an unique equalization technique that improves coherence over existing notching techniques. First, the proposed algorithm limits mitigation to only the samples containing interference, unlike adaptive filtering algorithms, so the remaining samples are not modified. Additionally, the mitigation adapts to changing interference power such that the resulting correction equalizes the power across the data samples. The result is reduced distortion and improved coherence for the terrain. SAR data demonstrates improved coherence from the proposed equalization correction over existing notching methods for chirped interference sources.
Proceedings of SPIE | 2013
Cameron Musgrove; Richard M. Naething
Synthetic aperture radar systems that use the polar format algorithm are subject to a focused scene size limit inherent to the polar format algorithm. The classic focused scene size limit is determined from the dominant residual range phase error term. Given the many sources of phase error in a synthetic aperture radar, a system designer is interested in how much phase error results from the assumptions made with the polar format algorithm. Autofocus algorithms have limits to the amount and type of phase error that can be corrected. Current methods correct only one or a few terms of the residual phase error. A system designer needs to be able to evaluate the contribution of the residual or uncorrected phase error terms to determine the new focused scene size limit. This paper describes a method to estimate the complete residual phase error, not just one or a few of the dominant residual terms. This method is demonstrated with polar format image formation, but is equally applicable to other image formation algorithms. A benefit for the system designer is that additional correction terms can be added or deleted from the analysis as necessary to evaluate the resulting effect upon image quality.
Proceedings of SPIE | 2016
Cameron Musgrove
Synthetic aperture radar (SAR) images contain a grainy pattern, called speckle, that is a consequence of a coherent imaging system. For fine resolution SAR images speckle can obscure subtle features and reduce visual appeal. Many speckle reduction methods result in a loss of image resolution and reduce visual appeal which can obscure subtle features. Another approach to maintain resolution while reducing speckle is to register and combine multiple images. For persistent surveillance applications it is more efficient for an airborne platform to fly circles around the particular area of interest. In these cases, it would be beneficial to combine multiple circle mode SAR images, however the image registration process is not so straightforward because the layover angle changes in each image. This paper develops a SAR image registration process for combining multiple circle mode SAR images to reduce speckle while preserving resolution. The registration first uses a feature matching algorithm for a coarse rotation and alignment, and then uses a fine registration and warp. Ku band SAR data from a circle mode SAR collection is used to show the effectiveness of the registration and enhanced visual appeal from multi-looking.
Proceedings of SPIE | 2014
Cameron Musgrove; Richard M. Naething; John Edmund Schilling
We propose a new laboratory method for characterizing synthetic aperture radar (SAR) systems through the use of a synthetic scene generator. Flight tests are the only definitive way to characterize the system level performance of airborne synthetic aperture radar systems. However, due to the expense of flights tests it is beneficial to complete as much testing as possible in a laboratory environment before flight testing is performed. There are many existing tests that are employed to measure the performance of various subsystems in a SAR system, find defective hardware, and indicate design problems that need to be mitigated. However, certain issues can only be found on an integrated system, and laboratory testing at a system level is typically confined to characterizing the impulse response (IPR) of a single point target through the use of an optical delay line. While useful, delay line testing requires running a modified version of real-time image formation code as the delay line does not completely mimic a real target. Ideally, system level tests are performed on unmodified code. On modern SAR systems many algorithms are data driven (e.g., autofocus) and require a substantially more sophisticated data model for testing. We desire to create a complete system test by combining an arbitrary number of point targets and clutter patterns to mimic radar responses from a real scene. This capability enables complete testing of radar systems in a laboratory environment according to prescribed terrain/scene characteristics. This paper presents an overview of the system requirements for a synthetic scene generator. The analysis is limited to SAR systems utilizing chirp waveforms and stretch processing. Furthermore, we derive relationships between IF bandwidth, target position, and the phase history model. A technique to properly compensate for motion pulse to pulse is presented. Finally, our concept is demonstrated with simulation data.
Proceedings of SPIE | 2008
Daqing Piao; Zhen Jiang; Guan Xu; Cameron Musgrove; Charles F. Bunting
The trans-rectal implementation of NIR optical tomography makes it possible to assess functional status like hemoglobin concentration and oxygen saturation in prostate non-invasively. Trans-rectal NIR tomography may provide tissue-specific functional contrast that is potentially valuable for differentiation of cancerous lesions from normal tissues. Such information will help to determine if a prostate biopsy is needed or can be excluded for an otherwise ambiguous lesion. The relatively low spatial resolution due to the diffuse light detection in trans-rectal NIR tomography, however, limits the accuracy of localizing a suspicious tissue volume. Trans-rectal ultrasound (TRUS) is the clinical standard for guiding the positioning of biopsy needle owing to its resolution and convenience; nevertheless, TRUS lacks the pathognomic specificity to guide biopsy to only the suspicious lesions. The combination of trans-rectal NIR tomography with TRUS could potentially give better differentiation of cancerous tissue from normal background and to accurately localize the cancer-suspicious contrast obtained from NIR tomography. This paper will demonstrate the design and initial evaluation of a trans-rectal NIR tomography probe that can conveniently integrate with a commercial TRUS transducer. The transrectal NIR tomography obtained from this probe is concurrent with TRUS at matching sagittal imaging plane. This design provides the flexibility of simple correlation of trans-rectal NIR with TRUS, and using TRUS anatomic information as spatial prior for NIR image reconstruction.
Proceedings of SPIE | 2007
Cameron Musgrove; Charles F. Bunting; Hamid Dehghani; Brian W. Pogue; Daqing Piao
Biomedical optics | 2008
Guan Xu; Cameron Musgrove; Charles F. Bunting; Hamid Dehghani; Daqing Piao
Archive | 2018
Cameron Musgrove; Douglas Thompson