Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camila Bacellar is active.

Publication


Featured researches published by Camila Bacellar.


Science | 2014

Shapes and vorticities of superfluid helium nanodroplets

Luis F. Gomez; Ken R. Ferguson; James P. Cryan; Camila Bacellar; Rico Mayro P. Tanyag; Curtis Jones; Sebastian Schorb; Denis Anielski; A. Belkacem; Charles Bernando; Rebecca Boll; John D. Bozek; Sebastian Carron; Gang Chen; Tjark Delmas; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Robert Hartmann; Alexander Hexemer; Martin Huth; Justin Kwok; Stephen R. Leone; Jonathan H. S. Ma; Filipe R. N. C. Maia; Erik Malmerberg; Stefano Marchesini; Daniel M. Neumark; Billy K. Poon

X-raying superfluid helium droplets When physicists rotate the superfluid 4He, it develops a regular array of tiny whirlpools, called vortices. The same phenomenon should occur in helium droplets half a micrometer in size, but studying individual droplets is tricky. Gomez et al. used x-ray diffraction to deduce the shape of individual rotating droplets and image the resulting vortex patterns, which confirmed the superfluidity of the droplets. They found that superfluid droplets can host a surprising number of vortices and can rotate faster than normal droplets without disintegrating. Science, this issue p. 906 Vortex lattices inside individual helium droplets are imaged using x-ray diffraction. Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~108 to 1011 atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.


Journal of Physical Chemistry Letters | 2014

Atomic-scale perspective of ultrafast charge transfer at a dye-semiconductor interface

Katrin R. Siefermann; C. D. Pemmaraju; Stefan Neppl; Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Jinghua Guo; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; O. Krupin; J. J. Turner; W. F. Schlotter; Michael R. Holmes; Marc Messerschmidt; Michael P. Minitti

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.


Structural Dynamics | 2015

Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

Rico Mayro P. Tanyag; Charles Bernando; Curtis Jones; Camila Bacellar; Ken R. Ferguson; Denis Anielski; Rebecca Boll; Sebastian Carron; James P. Cryan; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Luis F. Gomez; Robert Hartmann; Daniel M. Neumark; Daniel Rolles; Benedikt Rudek; Artem Rudenko; Katrin R. Siefermann; Joachim Ullrich; Fabian Weise; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov

Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.


Review of Scientific Instruments | 2014

Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

Andrey Shavorskiy; Stefan Neppl; Daniel Slaughter; James P. Cryan; Katrin R. Siefermann; Fabian Weise; Ming-Fu Lin; Camila Bacellar; Michael P. Ziemkiewicz; Ioannis Zegkinoglou; Matthew Fraund; Champak Khurmi; Marcus P. Hertlein; Travis Wright; Nils Huse; Robert W. Schoenlein; Tolek Tyliszczak; G. Coslovich; Robert A. Kaindl; Bruce S. Rude; Andreas Ölsner; Sven Mähl; Hendrik Bluhm; Oliver Gessner

An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouvilles theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.


Journal of Chemical Physics | 2014

Femtosecond time-resolved XUV + UV photoelectron imaging of pure helium nanodroplets

Michael Ziemkiewicz; Camila Bacellar; Katrin R. Siefermann; Stephen R. Leone; Daniel M. Neumark; Oliver Gessner

Liquid helium nanodroplets, consisting of on average 2 × 10(6) atoms, are examined using femtosecond time-resolved photoelectron imaging. The droplets are excited by an extreme ultraviolet light pulse centered at 23.7 eV photon energy, leading to states within a band that is associated with the 1s3p and 1s4p Rydberg levels of free helium atoms. The initially excited states and subsequent relaxation dynamics are probed by photoionizing transient species with a 3.2 eV pulse and using velocity map imaging to measure time-dependent photoelectron kinetic energy distributions. Significant differences are seen compared to previous studies with a lower energy (1.6 eV) probe pulse. Three distinct time-dependent signals are analyzed by global fitting. A broad intense signal, centered at an electron kinetic energy (eKE) of 2.3 eV, grows in faster than the experimental time resolution and decays in ~100 fs. This feature is attributed to the initially excited droplet state. A second broad transient feature, with eKE ranging from 0.5 to 4 eV, appears at a rate similar to the decay of the initially excited state and is attributed to rapid atomic reconfiguration resulting in Franck-Condon overlap with a broader range of cation geometries, possibly involving formation of a Rydberg-excited (He(n))* core within the droplet. An additional relaxation pathway leads to another short-lived feature with vertical binding energies ≳2.4 eV, which is identified as a transient population within the lower-lying 1s2p Rydberg band. Ionization at 3.2 eV shows an enhanced contribution from electronically excited droplet states compared to ejected Rydberg atoms, which dominate at 1.6 eV. This is possibly the result of increased photoelectron generation from the bulk of the droplet by the more energetic probe photons.


22nd International Conference on the Application of Accelerators in Research and Industry, CAARI 2012 | 2013

Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Katrin R. Siefermann; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Marcus P. Hertlein; Jinghua Guo; Tolek Tyliszczak; David Prendergast; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Thorsten Weber; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; Anders Nilsson; O. Krupin; Joshua J. Turner; W. F. Schlotter

X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.


Frontiers in Optics | 2013

Femtosecond time-resolved X-ray photoelectron spectroscopy studies of charge transfer in dye-sensitized semiconductor nanocrystals

Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Katrin R. Siefermann; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Marcus P. Hertlein; Jinghua Guo; Tolek Tyliszczak; David Prendergast; Das Pemmaraju; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Thorsten Weber; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; Anders Nilsson; O. Krupin; J. J. Turner

A femtosecond time-resolved X-ray photoelectron spectroscopy experiment at the Linac Coherent Light Source (LCLS) provides an atomic perspective of the transient electronic states at a molecule-nanocrystal interface used in dye-sensitized solar cells.


Physical Review B | 2016

Coupled motion of Xe clusters and quantum vortices in He nanodroplets

Curtis Jones; Charles Bernando; Rico Mayro P. Tanyag; Camila Bacellar; Ken R. Ferguson; Luis F. Gomez; Denis Anielski; A. Belkacem; Rebecca Boll; John D. Bozek; Sebastian Carron; James P. Cryan; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Robert Hartmann; Daniel M. Neumark; Daniel Rolles; A. Rudenko; Katrin R. Siefermann; Fabian Weise; Benedikt Rudek; Felix Sturm; Joachim H. Ullrich; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov


Physical Review B | 2017

Shapes of rotating superfluid helium nanodroplets

Charles Bernando; Rico Mayro P. Tanyag; Curtis Jones; Camila Bacellar; Maximilian Bucher; Ken R. Ferguson; Daniela Rupp; Michael Ziemkiewicz; Luis F. Gomez; Adam S. Chatterley; Tais Gorkhover; Maria Müller; John D. Bozek; Sebastian Carron; Justin Kwok; S. L. Butler; T. Möller; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov


Bulletin of the American Physical Society | 2017

Visualizing the femtosecond emergence and picosecond evolution of an anisotropic nanoplasma.

Camila Bacellar; Adam S. Chatterley; Florian Lackner; Sri Pemmaraju; Rico Mayro P. Tanyag; Charles Bernando; Deepak Verma; Sean Connell; Maximilian Bucher; Ken R. Ferguson; Tais Gorkhover; R Coffee; G Coslovich; D. Ray; T Osipov; Daniel M. Neumark; Christoph Bostedt; Andrey F. Vilesov; Oliver Gessner

Collaboration


Dive into the Camila Bacellar's collaboration.

Top Co-Authors

Avatar

Oliver Gessner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Neumark

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rico Mayro P. Tanyag

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrey F. Vilesov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Charles Bernando

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ken R. Ferguson

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Curtis Jones

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Katrin R. Siefermann

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luis F. Gomez

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge