Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camila Lopez-Anido is active.

Publication


Featured researches published by Camila Lopez-Anido.


Molecular and Cellular Biology | 2012

Developmental Regulation of MicroRNA Expression in Schwann Cells

Nolan Gokey; Rajini Srinivasan; Camila Lopez-Anido; Courtney Krueger; John Svaren

ABSTRACT Schwann cell differentiation and subsequent myelination of the peripheral nervous system require the action of several transcription factors, including Sox10, which is vital at multiple stages of development. The transition from immature to myelinating Schwann cell is also regulated posttranscriptionally and depends upon Dicer-mediated processing of microRNAs (miRNAs). Although specific miRNA targets have begun to be identified, the mechanisms establishing the dynamic regulation of miRNA expression have not been elucidated. We performed expression profiling studies and identified 225 miRNAs differentially expressed during peripheral myelination. A subset of 9 miRNAs is positively regulated by Sox10, including miR-338 which has been implicated in oligodendrocyte maturation. In vivo chromatin immunoprecipitation (ChIP) of sciatic nerve cells revealed a Sox10 binding site upstream of an alternate promoter within the Aatk gene, which hosts miR-338. Sox10 occupied this site in spinal cord ChIP experiments, suggesting a similar regulatory mechanism in oligodendrocytes. Cancer profiling studies have identified clusters of miRNAs that regulate proliferation, termed “oncomirs.” In Schwann cells, the expression of many of these proproliferative miRNAs was reduced in the absence of Sox10. Finally, Schwann cells with reduced Sox10 and oncomir expression have an increase in the CDK inhibitor p21 and a concomitant reduction in cell proliferation.


The Journal of Neuroscience | 2011

Regulation of the PMP22 Gene through an Intronic Enhancer

Erin A. Jones; Camila Lopez-Anido; Rajini Srinivasan; Courtney Krueger; Li-Wei Chang; Rakesh Nagarajan; John Svaren

Successful myelination of the peripheral nervous system depends upon induction of major protein components of myelin, such as peripheral myelin protein 22 (PMP22). Myelin stability is also sensitive to levels of PMP22, as a 1.4 Mb duplication on human chromosome 17, resulting in three copies of PMP22, is the most common cause of the peripheral neuropathy Charcot-Marie-Tooth disease. The transcription factor Egr2/Krox20 is required for induction of high level expression of Pmp22 in Schwann cells but its activation elements have not yet been determined. Using chromatin immunoprecipitation analysis of the rat Pmp22 locus, we found a major peak of Egr2 binding within the large intron of the Pmp22 gene. Analysis of a 250 bp region within the largest intron showed that it is strongly activated by Egr2 expression in reporter assays. Moreover, this region contains conserved binding sites not only for Egr2 but also for Sox10, which is also required for Schwann cell development. Our analysis shows that Sox10 is required for optimal activity of the intronic site as well as PMP22 expression. Finally, mouse transgenic analysis revealed tissue-specific expression of this intronic sequence in peripheral nerve. Overall, these data show that Egr2 and Sox10 activity are directly involved in mediating the developmental induction of Pmp22 expression.


ACS Chemical Biology | 2012

Identification of Drug Modulators Targeting Gene-Dosage Disease CMT1A

Sung-Wook Jang; Camila Lopez-Anido; Ryan MacArthur; John Svaren; James Inglese

The structural integrity of myelin formed by Schwann cells in the peripheral nervous system (PNS) is required for proper nerve conduction and is dependent on adequate expression of myelin genes including peripheral myelin protein 22 (PMP22). Consequently, excess PMP22 resulting from its genetic duplication and overexpression has been directly associated with the peripheral neuropathy called Charcot-Marie-Tooth disease type 1A (CMT1A), the most prevalent type of CMT. Here, in an attempt to identify transcriptional inhibitors with therapeutic value toward CMT1A, we developed a cross-validating pair of orthogonal reporter assays, firefly luciferase (FLuc) and β-lactamase (βLac), capable of recapitulating PMP22 expression, utilizing the intronic regulatory element of the human PMP22 gene. Each compound from a collection of approximately 3,000 approved drugs was tested at multiple titration points to achieve a pharmacological end point in a 1536-well plate quantitative high-throughput screen (qHTS) format. In conjunction with an independent counter-screen for cytotoxicity, the design of our orthogonal screen platform effectively contributed to selection and prioritization of active compounds, among which three drugs (fenretinide, olvanil, and bortezomib) exhibited marked reduction of endogenous Pmp22 mRNA and protein. Overall, the findings of this study provide a strategic approach to assay development for gene-dosage diseases such as CMT1A.


Glia | 2015

Differential Sox10 genomic occupancy in myelinating glia.

Camila Lopez-Anido; Guannan Sun; Matthias Koenning; Rajini Srinivasan; Holly A. Hung; Ben Emery; Sunduz Keles; John Svaren

Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type‐specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP‐Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type‐specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super‐enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type‐specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897–1914


Nature Neuroscience | 2016

YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells

Yannick Poitelon; Camila Lopez-Anido; Kathleen Catignas; Caterina Berti; Marilena Palmisano; Courtney Williamson; Dominique Ameroso; Kansho Abiko; Yoonchan Hwang; Alex Gregorieff; Jeffrey L. Wrana; Mohammadnabi Asmani; Ruogang Zhao; Fraser J. Sim; Lawrence Wrabetz; John Svaren; Maria Laura Feltri

Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice, we show that Taz is required in Schwann cells for radial sorting and myelination and that Yap is redundant with Taz. Yap and Taz are activated in Schwann cells by mechanical stimuli and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.


Journal of Biological Chemistry | 2011

Early Growth Response 1 (Egr1) Regulates Cholesterol Biosynthetic Gene Expression

Nolan Gokey; Camila Lopez-Anido; Anne Lynn Gillian-Daniel; John Svaren

The early growth response (EGR) family of transcription factors has been implicated in control of lipid biosynthetic genes. Egr1 is induced by insulin both in vitro and in vivo and is the most highly expressed family member in liver. In this study, we investigated whether Egr1 regulates cholesterol biosynthetic genes in liver. Using an insulin-sensitive liver cell line, we show that localization of Egr1 to cholesterol biosynthetic genes is induced by insulin treatment and that this localization precedes the induction of the genes. Reduction in Egr1 expression using targeted siRNA blunted the insulin-dependent induction of cholesterol genes. A similar reduction in squalene epoxidase expression was also observed in Egr1 null mice. In addition, application of chromatin immunoprecipitation (ChIP) samples to tiled gene microarrays revealed localization of Egr1 in promoter regions of many cholesterol gene loci. In vivo ChIP assays using liver tissue show that Egr1 localization to several cholesterol biosynthetic gene promoters is induced by feeding. Finally, analysis of plasma cholesterol in Egr1−/− mice indicated a significant decrease in serum cholesterol when compared with wild-type mice. Together these data point to Egr1 as a modulator of the cholesterol biosynthetic gene family in liver.


Annals of Neurology | 2017

A mutation in the Tubb4a gene leads to microtubule accumulation with hypomyelination and demyelination

Ian D. Duncan; Marianna Bugiani; Abigail B. Radcliff; John J. Moran; Camila Lopez-Anido; Phu Duong; Benjamin K. August; Nicole I. Wolf; Marjo S. van der Knaap; John Svaren

Our goal was to define the genetic cause of the profound hypomyelination in the taiep rat model and determine its relevance to human white matter disease.


Journal of Neurochemistry | 2017

Dual specificity phosphatase 15 regulates Erk activation in Schwann cells

José F. Rodríguez-Molina; Camila Lopez-Anido; Ki H. Ma; Chongyu Zhang; Tyler Olson; Katharina N. Muth; Matthias Weider; John Svaren

Schwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia. However, other factors are divergent as Schwann cells need the transcription factor early growth response 2/Krox20 and oligodendrocytes require Myrf. Likewise, some signaling pathways, like the Erk1/2 kinases, are necessary in both cell types for proper myelination. Nonetheless, the molecular mechanisms that control this shared signaling pathway in myelinating cells remain only partially characterized. The hypothesis of this study is that signaling pathways that are similarly regulated in both Schwann cells and oligodendrocytes play central roles in coordinating the differentiation of myelinating glia. To address this hypothesis, we have used genome‐wide binding data to identify a relatively small set of genes that are similarly regulated by Sox10 in myelinating glia. We chose one such gene encoding Dual specificity phosphatase 15 (Dusp15) for further analysis in Schwann cell signaling. RNA interference and gene deletion by genome editing in cultured RT4 and primary Schwann cells showed Dusp15 is necessary for full activation of Erk1/2 phosphorylation. In addition, we show that Dusp15 represses expression of several myelin genes, including myelin basic protein. The data shown here support a mechanism by which early growth response 2 activates myelin genes, but also induces a negative feedback loop through Dusp15 to limit over‐expression of myelin genes.


PLOS ONE | 2014

In silico pooling of ChIP-seq control experiments.

Guannan Sun; Rajini Srinivasan; Camila Lopez-Anido; Holly A. Hung; John Svaren; Sunduz Keles

As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples.


bioRxiv | 2018

Neuregulin 1 type III reduces severity in a mouse model of Congenital Hypomyelinating Neuropathy

Belin Sophie; Francesca Ornaghi; Ghjuvan'Ghjacumu Shackleford; Jie Wang; Cristina Scapin; Camila Lopez-Anido; Nicholas Silvestri; Neil Robertson; Courtney Williamson; Akihiro Ishii; Carla Taveggia; John Svaren; Rashmi Bansal; Markus H. Schwab; Klaus-Armin Nave; Pietro Fratta; Yannick Poitelon; Maurizio D'Antonio; Maria Laura Feltri; Lawrence Wrabetz

Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 type III regulate Schwann cell fate and myelination. Here we ask if modulating neuregulin 1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we rescued the myelination defects by early overexpression of neuregulin 1 type III. Surprisingly, the rescue was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 (Pmp2) and oligodendrocyte myelin glycoprotein (Omg). We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial neuregulin 1 type III signaling has beneficial effects and restores myelination defects during development in a model of CHN.

Collaboration


Dive into the Camila Lopez-Anido's collaboration.

Top Co-Authors

Avatar

John Svaren

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rajini Srinivasan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John J. Moran

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney Krueger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guannan Sun

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Holly A. Hung

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James Inglese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ki H. Ma

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge