Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camile P. Semighini is active.

Publication


Featured researches published by Camile P. Semighini.


Cell | 2008

An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer

Lars Zender; Wen Xue; Johannes Zuber; Camile P. Semighini; Alexander Krasnitz; Beicong Ma; Peggy Zender; Stefan Kubicka; John M. Luk; Peter Schirmacher; W. Richard McCombie; Michael Wigler; James Hicks; Gregory J. Hannon; Scott Powers; Scott W. Lowe

Cancers are highly heterogeneous and contain many passenger and driver mutations. To functionally identify tumor suppressor genes relevant to human cancer, we compiled pools of short hairpin RNAs (shRNAs) targeting the mouse orthologs of genes recurrently deleted in a series of human hepatocellular carcinomas and tested their ability to promote tumorigenesis in a mosaic mouse model. In contrast to randomly selected shRNA pools, many deletion-specific pools accelerated hepatocarcinogenesis in mice. Through further analysis, we identified and validated 13 tumor suppressor genes, 12 of which had not been linked to cancer before. One gene, XPO4, encodes a nuclear export protein whose substrate, EIF5A2, is amplified in human tumors, is required for proliferation of XPO4-deficient tumor cells, and promotes hepatocellular carcinoma in mice. Our results establish the feasibility of in vivo RNAi screens and illustrate how combining cancer genomics, RNA interference, and mosaic mouse models can facilitate the functional annotation of the cancer genome.


Molecular Microbiology | 2006

Farnesol‐induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi

Camile P. Semighini; Jacob M. Hornby; Raluca Dumitru; Kenneth W. Nickerson; Steven D. Harris

The dimorphic fungus Candida albicans secretes farnesol, which acts as a quorum‐sensing molecule and prevents the yeast to mycelium conversion. In this study we examined the effect of farnesol in the filamentous fungus Aspergillus nidulans. We show that externally added farnesol has no effect on hyphal morphogenesis; instead, it triggers morphological features characteristic of apoptosis. Additional experiments suggest that mitochondria and reactive oxygen species (ROS) participate in farnesol‐induced apoptosis. Moreover, the effects of farnesol appear to be mediated by the FadA heterotrimeric G protein complex. Because A. nidulans does not secrete detectable amounts of farnesol, we propose that it responds to farnesol produced by other fungi. In agreement with this notion, growth and development were impaired in a farnesol‐dependent manner when A. nidulans was co‐cultivated with C. albicans. Taken together, our data suggest that farnesol, in addition to its quorum‐sensing function that regulates morphogenesis, is also employed by C. albicansTo reduce competition from other microbes.


Eukaryotic Cell | 2003

Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes.

Gustavo H. Goldman; Everaldo dos Reis Marques; Diógenes Custódio Duarte Ribeiro; Luciano Ângelo de Souza Bernardes; Andréa Carla Quiapin; Patrícia Marostica Vitorelli; Marcela Savoldi; Camile P. Semighini; Regina Costa de Oliveira; Luiz R. Nunes; Luiz R. Travassos; Rosana Puccia; Wagner L. Batista; Leslie Ecker Ferreira; Júlio C. Moreira; Ana Paula Bogossian; Fredj Tekaia; Marina P. Nobrega; Francisco G. Nobrega; Maria Helena S. Goldman

ABSTRACT Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5′ and 3′ ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities.


Genetics | 2008

Regulation of Apical Dominance in Aspergillus nidulans Hyphae by Reactive Oxygen Species

Camile P. Semighini; Steven D. Harris

In fungal hyphae, apical dominance refers to the suppression of secondary polarity axes in the general vicinity of a growing hyphal tip. The mechanisms underlying apical dominance remain largely undefined, although calcium signaling may play a role. Here, we describe the localized accumulation of reactive oxygen species (ROS) in the apical region of Aspergillus nidulans hyphae. Our analysis of atmA (ATM) and prpA (PARP) mutants reveals a correlation between localized production of ROS and enforcement of apical dominance. We also provide evidence that NADPH oxidase (Nox) or related flavoproteins are responsible for the generation of ROS at hyphal tips and characterize the roles of the potential Nox regulators NoxR, Rac1, and Cdc42 in this process. Notably, our genetic analyses suggest that Rac1 activates Nox, whereas NoxR and Cdc42 may function together in a parallel pathway that regulates Nox localization. Moreover, the latter pathway may also include Bem1, which we propose represents a p40phox analog in fungi. Collectively, our results support a model whereby localized Nox activity generates a pool of ROS that defines a dominant polarity axis at hyphal tips.


Applied and Environmental Microbiology | 2002

Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

Camile P. Semighini; Mozart Marins; Maria Helena S. Goldman; Gustavo H. Goldman

ABSTRACT The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated drugs, such as camptothecin, imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide. We also verified the relative transcript levels of the Atr genes in the A. nidulans imazalil-resistant mutants. These genes displayed a very complex pattern in different ima genetic backgrounds. The imaB mutant has higher basal transcript levels of AtrB and -D than those of the wild-type strain. The levels of these two genes are comparable when the imaB mutant is grown in the presence and absence of imazalil. The imaC, -D, and -H mutants have higher basal levels of AtrA than that of the wild type. The same behavior is observed for the relative transcript levels of AtrB in the imaG mutant background.


Eukaryotic Cell | 2007

In Vivo and In Vitro Anaerobic Mating in Candida albicans

Raluca Dumitru; Dhammika H. M. L. P. Navarathna; Camile P. Semighini; Christian Elowsky; Razvan Dumitru; Daniel Dignard; Malcolm Whiteway; Audrey L. Atkin; Kenneth W. Nickerson

ABSTRACT Candida albicans cells of opposite mating types are thought to conjugate during infection in mammalian hosts, but paradoxically, the mating-competent opaque state is not stable at mammalian body temperatures. We found that anaerobic conditions stabilize the opaque state at 37°C, block production of farnesol, and permit in vitro mating at 37°C at efficiencies of up to 84%. Aerobically, farnesol prevents mating because it kills the opaque cells necessary for mating, and as a corollary, farnesol production is turned off in opaque cells. These in vitro observations suggest that naturally anaerobic sites, such as the efficiently colonized gastrointestinal (GI) tract, could serve as niches for C. albicans mating. In a direct test of mating in the mouse GI tract, prototrophic cells were obtained from auxotrophic parent cells, confirming that mating will occur in this organ. These cells were true mating products because they were tetraploid, mononuclear, and prototrophic, and they contained the heterologous hisG marker from one of the parental strains.


Fems Microbiology Letters | 2008

Inhibition of Fusarium graminearum growth and development by farnesol

Camile P. Semighini; Nicholas Murray; Steven D. Harris

The isoprenoid farnesol was previously shown to induce morphological features characteristic of apoptosis in the filamentous fungus Aspergillus nidulans. This study demonstrates that under similar liquid media growth conditions, farnesol also triggers apoptosis in the plant pathogenic fungus Fusarium graminearum. However, unlike A. nidulans, F. graminearum spores treated with farnesol exhibited altered germination patterns and most (>60%) lysed upon prolonged exposure. Given the economic importance of F. graminearum as a pathogen of small grains, this study proposes that farnesol may have potential value as an antifungal compound.


Genetics | 2006

Functional Characterization of the Putative Aspergillus nidulans Poly(ADP-Ribose) Polymerase Homolog PrpA

Camile P. Semighini; Marcela Savoldi; Gustavo H. Goldman; Steven D. Harris

POLY(ADP-RIBOSE) polymerase (PARP) is a highly conserved enzyme involved in multiple aspects of animal and plant cell physiology. For example, PARP is thought to be intimately involved in the early signaling events that trigger the DNA damage response. However, the genetic dissection of PARP function has been hindered by the presence of multiple homologs in most animal and plant species. Here, we present the first functional characterization of a putative PARP homolog (PrpA) in a microbial system (Aspergillus nidulans). PrpA belongs to a group of PARP homologs that includes representatives from filamentous fungi and protists. The genetic analysis of prpA demonstrates that it is an essential gene whose role in the DNA damage response is sensitive to gene dosage. Notably, temporal patterns of prpA expression and PrpA–GFP nuclear localization suggest that PrpA acts early in the A. nidulans DNA damage response. Additional studies implicate PrpA in farnesol-induced cell death and in the initiation of asexual development. Collectively, our results provide a gateway for probing the diverse functions of PARP in a sophisticated microbial genetic system.


Genetics | 2006

Regulation of Hyphal Morphogenesis and the DNA Damage Response by the Aspergillus nidulans ATM Homolog AtmA

Iran Malavazi; Camile P. Semighini; Marcia Regina von Zeska Kress; Steven D. Harris; Gustavo H. Goldman

Ataxia telangiectasia (A-T) is an inherited disorder characterized by progressive loss of motor function and susceptibility to cancer. The most prominent clinical feature observed in A-T patients is the degeneration of Purkinje motor neurons. Numerous studies have emphasized the role of the affected gene product, ATM, in the regulation of the DNA damage response. However, in Purkinje cells, the bulk of ATM localizes to the cytoplasm and may play a role in vesicle trafficking. The nature of this function, and its involvement in the pathology underlying A-T, remain unknown. Here we characterize the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we find that AtmA is also required for polarized hyphal growth. We demonstrate that an atmA mutant fails to generate a stable axis of hyphal polarity. Notably, cytoplasmic microtubules display aberrant cortical interactions at the hyphal tip. Our results suggest that AtmA regulates the function and/or localization of landmark proteins required for the formation of a polarity axis. We propose that a similar function may contribute to the establishment of neuronal polarity.


Molecular Microbiology | 2003

Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans

Camile P. Semighini; Marcia Regina von Zeska Kress Fagundes; Joseane Cristina Ferreira; Renata Castiglioni Pascon; Maria Helena S. Goldman; Gustavo H. Goldman

The Mre11‐Rad50‐Nbs1 protein complex has emerged as a central player in the cellular DNA damage response. Mutations in scaANBS1, which encodes the apparent homologue of human Nbs1 in Aspergillus nidulans, inhibit growth in the presence of the anti‐topoisomerase I drug camptothecin. We have used the scaANBS1 cDNA as a bait in a yeast two‐hybrid screening and report the identification of the A. nidulans Mre11 homologue (mreA). The inactivated mreA strain was more sensitive to several DNA damaging and oxidative stress agents. Septation in A. nidulans is dependent not only on the uvsBATR gene, but also on the mre11 complex. scaANBS1 and mreA genes are both involved in the DNA replication checkpoint whereas mreA is specifically involved in the intra‐S‐phase checkpoint. ScaANBS1 also participates in G2‐M checkpoint control upon DNA damage caused by MMS. In addition, the scaANBS1 gene is also important for ascospore viability, whereas mreA is required for successful meiosis in A. nidulans. Consistent with this view, the Mre11 complex and the uvsCRAD51 gene are highly expressed at the mRNA level during the sexual development.

Collaboration


Dive into the Camile P. Semighini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Harris

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raluca Dumitru

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Iran Malavazi

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Alexander Krasnitz

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Audrey L. Atkin

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Beicong Ma

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christian Elowsky

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge