Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilla Foged is active.

Publication


Featured researches published by Camilla Foged.


Expert Opinion on Drug Delivery | 2008

Cell-penetrating peptides for drug delivery across membrane barriers

Camilla Foged; Hanne Moerck Nielsen

During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation of their therapeutic potential.


Immunology | 2007

The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

Karen Smith Korsholm; Else Marie Agger; Camilla Foged; Dennis Christensen; Jes Dietrich; Claire Swetman Andersen; Carsten Geisler; Peter Andersen

Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes did not have an effect on the maturation of murine bone‐marrow‐derived dendritic cells (BM‐DCs) related to the surface expression of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86. We found that ovalbumin (OVA) readily associated with the liposomes (> 90%) when mixed in equal concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM‐DCs as assessed by flow cytometry and confocal fluorescence laser‐scanning microscopy. This was an active process, which was arrested at 4° and by an inhibitor of actin‐dependent endocytosis, cytochalasin D. In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen‐presenting cells because we only observed a minimal uptake by T cells in mixed splenocyte cultures. The adsorption of antigen onto the liposomes increased the efficiency of antigen presentation more than 100 times in a responder assay with MHC class II‐restricted OVA‐specific T‐cell receptor transgenic DO11.10 T cells. Our data therefore suggest that the primary adjuvant mechanism of cationic DDA liposomes is to target the cell membrane of antigen‐presenting cells, which subsequently leads to enhanced uptake and presentation of antigen.


Journal of Controlled Release | 2010

Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation

Ditte Krohn Jensen; Dongmei Cun; Morten Jonas Maltesen; Hanne Mørck Nielsen; Camilla Foged

Abstract Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

Dongmei Cun; Ditte Krohn Jensen; Morten Jonas Maltesen; Matthew Bunker; Paul T. Whiteside; David J. Scurr; Camilla Foged; Hanne Mørck Nielsen

Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties.


International Journal of Pharmaceutics | 2010

Preparation and characterization of poly(dl-lactide-co-glycolide) nanoparticles for siRNA delivery

Dongmei Cun; Camilla Foged; Mingshi Yang; Hanne Mørck Nielsen

Synthetic short interfering RNA (siRNA) is promising for specific and efficient knockdown of disease-related genes. However, in vivo application of siRNA requires an effective delivery system. Commonly used siRNA carriers are based on polycations, which form electrostatic complexes with siRNA. Such poly- or lipoplexes are of limited use in vivo due to severe problems associated with toxicity, serum instability and non-specific immune-responses. The aim of the present study was to prepare uniformly sized nanoparticles (NPs) with a high load of siRNA by use of the safe and biodegradable poly-(DL-lactide-co-glycolide) (PLGA) polymer without including polycations. The siRNA was encapsulated in the core of NPs by the double emulsion solvent evaporation method. To optimize the NP formulation, the effects of important formulation and processing parameters were investigated systematically. Generally, spherical siRNA-loaded NPs (<300 nm, PDI<0.2, zeta potential -40 mV) were obtained. An encapsulation efficiency of up to 57% was achieved by adjusting the inner water phase volume, the PLGA concentration, the first emulsification sonication time, and stabilization of the water-oil interface with serum albumin. The integrity of siRNA was preserved during the preparation. Preparation of core-loaded siRNA-NPs based on PLGA and no cationic excipient seems possible and promising for delivery of siRNA.


Journal of Controlled Release | 2012

Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA

Ditte Krohn Jensen; Linda Jensen; Saeid Koocheki; Lasse Bengtson; Dongmei Cun; Hanne Mørck Nielsen; Camilla Foged

Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local delivery of biologically active siRNA directly to the lung tissue.


Pharmaceutical Research | 2002

Targeting Vaccines to Dendritic Cells

Camilla Foged; Anne Sundblad; Lars Hovgaard

Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.


European Journal of Pharmaceutical Sciences | 2012

License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems.

Camilla Foged; Jon Hansen; Else Marie Agger

Induction of CD8(+) T-cell responses is critical for the immunological control of a variety of diseases upon vaccination. Modern subunit vaccines are based on highly purified recombinant proteins. The high purity represents a major advancement in terms of vaccine safety compared to previous vaccination strategies with live attenuated or whole killed pathogens, but typically renders vaccine antigens poorly immunogenic and insufficient in mobilizing protective immunity. Adjuvants are therefore needed in vaccine formulations to enhance, direct and maintain the immune response to vaccine antigens. However, a weakness of many adjuvants is the lack of induction of CD8(+) T-cell responses against protein antigens, which are required for protection against challenging and difficult infectious diseases such as AIDS and for therapeutic cancer vaccination. Within the last decade, adjuvant systems that can induce CD8(+) T-cell responses have been developed and the first clinical trials demonstrating the clinical relevance of such formulations have been performed. This paper reviews the current status of lipid- and polymer-based particulate antigen delivery systems capable of stimulating CD8(+) T-cell immunity with special focus on mechanisms of priming and pharmaceutical requirements for optimal activation of cytotoxic T-lymphocytes that can kill virus-infected or abnormal (cancer) cells.


Expert Opinion on Drug Delivery | 2009

Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators

Pernille Nordly; Henriette Baun Madsen; Hanne Moerck Nielsen; Camilla Foged

Vaccines seek to adopt pathogen-like characteristics but not true pathogen characteristics to activate the immune system without causing life-threatening disease. Vaccine formulations are therefore often particulate in nature, with dimensions comparable to pathogens, and often contain highly conserved pathogen-associated molecular patterns as adjuvants stimulating the immune system. Only a few adjuvants have been approved for human use. There is therefore an unmet medical need for the development of effective and safe adjuvants that can stimulate cellular, humoral or mucosal immunity, or combinations thereof, depending on the requirements, to prevent the specific disease. Lipid-based particulate systems are in this respect promising and versatile adjuvants that can be customized rationally towards specific vaccine targets by varying their composition. In this review, current progress in the development of lipid-based vaccine delivery systems is discussed, with a special focus on emulsions, liposomes and immune-stimulating complexes, and their combination with immunostimulatory compounds. Formulations, adjuvant mechanisms and alternative administration routes are highlighted.


International Journal of Pharmaceutics | 2011

Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density.

Linda Jensen; Giovanni Maria Pavan; Marina R. Kasimova; Sandra Rutherford; Andrea Danani; Hanne Mørck Nielsen; Camilla Foged

Dendrimers are attractive vehicles for nucleic acid delivery due to monodispersity and ease of chemical design. The purpose of this study was to elucidate the self-assembly process between small interfering RNA (siRNA) and different generation poly(amidoamine) dendrimers and to characterize the resulting structures. The generation 4 (G4) and G7 displayed equal efficiencies for dendriplex aggregate formation, whereas G1 lacked this ability. Nanoparticle tracking analysis and dynamic light scattering showed reduced average size and increased polydispersity at higher dendrimer concentration. The nanoparticle tracking analysis indicated that electrostatic complexation results in an equilibrium between differently sized complex aggregates, where the centre of mass depends on the siRNA:dendrimer ratio. Isothermal titration calorimetric data suggested a simple binding for G1, whereas a biphasic binding was evident for G4 and G7 with an initial exothermic binding and a secondary endothermic formation of larger dendriplex aggregates, followed by agglomeration. The initial binding became increasingly exothermic as the generation increased, and the values were closely predicted by molecular dynamics simulations, which also demonstrated a generation dependent differences in the entropy of binding. The flexible G1 displayed the highest entropic penalty followed by the rigid G7, making the intermediate G4 the most suitable for dendriplex formation, showing favorable charge density for siRNA binding.

Collaboration


Dive into the Camilla Foged's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Franzyk

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Peter Andersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingshi Yang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Rose

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jukka Rantanen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Lene Jorgensen

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge